Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssmapsn Structured version   Visualization version   Unicode version

Theorem ssmapsn 39408
Description: A subset  C of a set exponentiation to a singleton, is its projection  D exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
ssmapsn.f  |-  F/_ f D
ssmapsn.a  |-  ( ph  ->  A  e.  V )
ssmapsn.c  |-  ( ph  ->  C  C_  ( B  ^m  { A } ) )
ssmapsn.d  |-  D  = 
U_ f  e.  C  ran  f
Assertion
Ref Expression
ssmapsn  |-  ( ph  ->  C  =  ( D  ^m  { A }
) )
Distinct variable groups:    A, f    C, f    ph, f
Allowed substitution hints:    B( f)    D( f)    V( f)

Proof of Theorem ssmapsn
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 ssmapsn.c . . . . . . . . 9  |-  ( ph  ->  C  C_  ( B  ^m  { A } ) )
21sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  f  e.  C )  ->  f  e.  ( B  ^m  { A } ) )
3 elmapi 7879 . . . . . . . 8  |-  ( f  e.  ( B  ^m  { A } )  -> 
f : { A }
--> B )
42, 3syl 17 . . . . . . 7  |-  ( (
ph  /\  f  e.  C )  ->  f : { A } --> B )
54ffnd 6046 . . . . . 6  |-  ( (
ph  /\  f  e.  C )  ->  f  Fn  { A } )
6 ssmapsn.d . . . . . . . . 9  |-  D  = 
U_ f  e.  C  ran  f
76a1i 11 . . . . . . . 8  |-  ( ph  ->  D  =  U_ f  e.  C  ran  f )
8 ovexd 6680 . . . . . . . . . . 11  |-  ( ph  ->  ( B  ^m  { A } )  e.  _V )
98, 1ssexd 4805 . . . . . . . . . 10  |-  ( ph  ->  C  e.  _V )
10 rnexg 7098 . . . . . . . . . . . 12  |-  ( f  e.  C  ->  ran  f  e.  _V )
1110rgen 2922 . . . . . . . . . . 11  |-  A. f  e.  C  ran  f  e. 
_V
1211a1i 11 . . . . . . . . . 10  |-  ( ph  ->  A. f  e.  C  ran  f  e.  _V )
139, 12jca 554 . . . . . . . . 9  |-  ( ph  ->  ( C  e.  _V  /\ 
A. f  e.  C  ran  f  e.  _V ) )
14 iunexg 7143 . . . . . . . . 9  |-  ( ( C  e.  _V  /\  A. f  e.  C  ran  f  e.  _V )  ->  U_ f  e.  C  ran  f  e.  _V )
1513, 14syl 17 . . . . . . . 8  |-  ( ph  ->  U_ f  e.  C  ran  f  e.  _V )
167, 15eqeltrd 2701 . . . . . . 7  |-  ( ph  ->  D  e.  _V )
1716adantr 481 . . . . . 6  |-  ( (
ph  /\  f  e.  C )  ->  D  e.  _V )
18 ssiun2 4563 . . . . . . . . 9  |-  ( f  e.  C  ->  ran  f  C_  U_ f  e.  C  ran  f )
1918adantl 482 . . . . . . . 8  |-  ( (
ph  /\  f  e.  C )  ->  ran  f  C_  U_ f  e.  C  ran  f )
20 ssmapsn.a . . . . . . . . . . 11  |-  ( ph  ->  A  e.  V )
21 snidg 4206 . . . . . . . . . . 11  |-  ( A  e.  V  ->  A  e.  { A } )
2220, 21syl 17 . . . . . . . . . 10  |-  ( ph  ->  A  e.  { A } )
2322adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  C )  ->  A  e.  { A } )
24 fnfvelrn 6356 . . . . . . . . 9  |-  ( ( f  Fn  { A }  /\  A  e.  { A } )  ->  (
f `  A )  e.  ran  f )
255, 23, 24syl2anc 693 . . . . . . . 8  |-  ( (
ph  /\  f  e.  C )  ->  (
f `  A )  e.  ran  f )
2619, 25sseldd 3604 . . . . . . 7  |-  ( (
ph  /\  f  e.  C )  ->  (
f `  A )  e.  U_ f  e.  C  ran  f )
2726, 6syl6eleqr 2712 . . . . . 6  |-  ( (
ph  /\  f  e.  C )  ->  (
f `  A )  e.  D )
285, 17, 27elmapsnd 39396 . . . . 5  |-  ( (
ph  /\  f  e.  C )  ->  f  e.  ( D  ^m  { A } ) )
2928ex 450 . . . 4  |-  ( ph  ->  ( f  e.  C  ->  f  e.  ( D  ^m  { A }
) ) )
3016adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  ->  D  e.  _V )
31 snex 4908 . . . . . . . . . 10  |-  { A }  e.  _V
3231a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  ->  { A }  e.  _V )
33 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  -> 
f  e.  ( D  ^m  { A }
) )
3422adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  ->  A  e.  { A } )
3530, 32, 33, 34fvmap 39387 . . . . . . . 8  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  -> 
( f `  A
)  e.  D )
366idi 2 . . . . . . . . 9  |-  D  = 
U_ f  e.  C  ran  f
37 rneq 5351 . . . . . . . . . 10  |-  ( f  =  g  ->  ran  f  =  ran  g )
3837cbviunv 4559 . . . . . . . . 9  |-  U_ f  e.  C  ran  f  = 
U_ g  e.  C  ran  g
3936, 38eqtri 2644 . . . . . . . 8  |-  D  = 
U_ g  e.  C  ran  g
4035, 39syl6eleq 2711 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  -> 
( f `  A
)  e.  U_ g  e.  C  ran  g )
41 eliun 4524 . . . . . . 7  |-  ( ( f `  A )  e.  U_ g  e.  C  ran  g  <->  E. g  e.  C  ( f `  A )  e.  ran  g )
4240, 41sylib 208 . . . . . 6  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  ->  E. g  e.  C  ( f `  A
)  e.  ran  g
)
43 simp3 1063 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  ( f `  A )  e.  ran  g )
44 simp1l 1085 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  ph )
4544, 20syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  A  e.  V )
46 eqid 2622 . . . . . . . . . . 11  |-  { A }  =  { A }
47 simp1r 1086 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  f  e.  ( D  ^m  { A } ) )
48 elmapfn 7880 . . . . . . . . . . . 12  |-  ( f  e.  ( D  ^m  { A } )  -> 
f  Fn  { A } )
4947, 48syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  f  Fn  { A } )
501sselda 3603 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  C )  ->  g  e.  ( B  ^m  { A } ) )
51 elmapfn 7880 . . . . . . . . . . . . . 14  |-  ( g  e.  ( B  ^m  { A } )  -> 
g  Fn  { A } )
5250, 51syl 17 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  C )  ->  g  Fn  { A } )
53523adant3 1081 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  C  /\  ( f `  A )  e.  ran  g )  ->  g  Fn  { A } )
54533adant1r 1319 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  g  Fn  { A } )
5545, 46, 49, 54fsneqrn 39403 . . . . . . . . . 10  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  ( f  =  g  <->  ( f `  A )  e.  ran  g ) )
5643, 55mpbird 247 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  f  =  g )
57 simp2 1062 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  g  e.  C )
5856, 57eqeltrd 2701 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  ( D  ^m  { A } ) )  /\  g  e.  C  /\  ( f `  A
)  e.  ran  g
)  ->  f  e.  C )
59583exp 1264 . . . . . . 7  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  -> 
( g  e.  C  ->  ( ( f `  A )  e.  ran  g  ->  f  e.  C
) ) )
6059rexlimdv 3030 . . . . . 6  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  -> 
( E. g  e.  C  ( f `  A )  e.  ran  g  ->  f  e.  C
) )
6142, 60mpd 15 . . . . 5  |-  ( (
ph  /\  f  e.  ( D  ^m  { A } ) )  -> 
f  e.  C )
6261ex 450 . . . 4  |-  ( ph  ->  ( f  e.  ( D  ^m  { A } )  ->  f  e.  C ) )
6329, 62impbid 202 . . 3  |-  ( ph  ->  ( f  e.  C  <->  f  e.  ( D  ^m  { A } ) ) )
6463alrimiv 1855 . 2  |-  ( ph  ->  A. f ( f  e.  C  <->  f  e.  ( D  ^m  { A } ) ) )
65 nfcv 2764 . . 3  |-  F/_ f C
66 ssmapsn.f . . . 4  |-  F/_ f D
67 nfcv 2764 . . . 4  |-  F/_ f  ^m
68 nfcv 2764 . . . 4  |-  F/_ f { A }
6966, 67, 68nfov 6676 . . 3  |-  F/_ f
( D  ^m  { A } )
7065, 69dfcleqf 39255 . 2  |-  ( C  =  ( D  ^m  { A } )  <->  A. f
( f  e.  C  <->  f  e.  ( D  ^m  { A } ) ) )
7164, 70sylibr 224 1  |-  ( ph  ->  C  =  ( D  ^m  { A }
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   {csn 4177   U_ciun 4520   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  vonvolmbllem  40874  vonvolmbl2  40877  vonvol2  40878
  Copyright terms: Public domain W3C validator