Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elunirnmbfm Structured version   Visualization version   Unicode version

Theorem elunirnmbfm 30315
Description: The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.)
Assertion
Ref Expression
elunirnmbfm  |-  ( F  e.  U. ran MblFnM  <->  E. s  e.  U. ran sigAlgebra E. t  e. 
U. ran sigAlgebra ( F  e.  ( U. t  ^m  U. s )  /\  A. x  e.  t  ( `' F " x )  e.  s ) )
Distinct variable group:    t, s, F, x

Proof of Theorem elunirnmbfm
Dummy variables  f 
a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mbfm 30313 . . . . 5  |- MblFnM  =  ( s  e.  U. ran sigAlgebra , 
t  e.  U. ran sigAlgebra  |->  { f  e.  ( U. t  ^m  U. s )  |  A. x  e.  t  ( `' f
" x )  e.  s } )
21mpt2fun 6762 . . . 4  |-  Fun MblFnM
3 elunirn 6509 . . . 4  |-  ( Fun MblFnM  ->  ( F  e.  U. ran MblFnM  <->  E. a  e.  dom MblFnM F  e.  (MblFnM `  a
) ) )
42, 3ax-mp 5 . . 3  |-  ( F  e.  U. ran MblFnM  <->  E. a  e.  dom MblFnM F  e.  (MblFnM `  a ) )
5 ovex 6678 . . . . . 6  |-  ( U. t  ^m  U. s )  e.  _V
65rabex 4813 . . . . 5  |-  { f  e.  ( U. t  ^m  U. s )  | 
A. x  e.  t  ( `' f "
x )  e.  s }  e.  _V
71, 6dmmpt2 7240 . . . 4  |-  dom MblFnM  =  ( U. ran sigAlgebra  X.  U. ran sigAlgebra )
87rexeqi 3143 . . 3  |-  ( E. a  e.  dom MblFnM F  e.  (MblFnM `  a )  <->  E. a  e.  ( U. ran sigAlgebra 
X.  U. ran sigAlgebra ) F  e.  (MblFnM `  a )
)
9 fveq2 6191 . . . . . 6  |-  ( a  =  <. s ,  t
>.  ->  (MblFnM `  a )  =  (MblFnM `  <. s ,  t >. ) )
10 df-ov 6653 . . . . . 6  |-  ( sMblFnM t )  =  (MblFnM `  <. s ,  t
>. )
119, 10syl6eqr 2674 . . . . 5  |-  ( a  =  <. s ,  t
>.  ->  (MblFnM `  a )  =  ( sMblFnM t
) )
1211eleq2d 2687 . . . 4  |-  ( a  =  <. s ,  t
>.  ->  ( F  e.  (MblFnM `  a )  <->  F  e.  ( sMblFnM t
) ) )
1312rexxp 5264 . . 3  |-  ( E. a  e.  ( U. ran sigAlgebra 
X.  U. ran sigAlgebra ) F  e.  (MblFnM `  a )  <->  E. s  e.  U. ran sigAlgebra E. t  e.  U. ran sigAlgebra F  e.  ( sMblFnM t ) )
144, 8, 133bitri 286 . 2  |-  ( F  e.  U. ran MblFnM  <->  E. s  e.  U. ran sigAlgebra E. t  e. 
U. ran sigAlgebra F  e.  ( sMblFnM t ) )
15 simpl 473 . . . 4  |-  ( ( s  e.  U. ran sigAlgebra  /\  t  e.  U. ran sigAlgebra )  -> 
s  e.  U. ran sigAlgebra )
16 simpr 477 . . . 4  |-  ( ( s  e.  U. ran sigAlgebra  /\  t  e.  U. ran sigAlgebra )  -> 
t  e.  U. ran sigAlgebra )
1715, 16ismbfm 30314 . . 3  |-  ( ( s  e.  U. ran sigAlgebra  /\  t  e.  U. ran sigAlgebra )  -> 
( F  e.  ( sMblFnM t )  <->  ( F  e.  ( U. t  ^m  U. s )  /\  A. x  e.  t  ( `' F " x )  e.  s ) ) )
18172rexbiia 3055 . 2  |-  ( E. s  e.  U. ran sigAlgebra E. t  e.  U. ran sigAlgebra F  e.  ( sMblFnM t )  <->  E. s  e.  U. ran sigAlgebra E. t  e.  U. ran sigAlgebra ( F  e.  ( U. t  ^m  U. s )  /\  A. x  e.  t  ( `' F " x )  e.  s ) )
1914, 18bitri 264 1  |-  ( F  e.  U. ran MblFnM  <->  E. s  e.  U. ran sigAlgebra E. t  e. 
U. ran sigAlgebra ( F  e.  ( U. t  ^m  U. s )  /\  A. x  e.  t  ( `' F " x )  e.  s ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   <.cop 4183   U.cuni 4436    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882   ` cfv 5888  (class class class)co 6650    ^m cmap 7857  sigAlgebracsiga 30170  MblFnMcmbfm 30312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-mbfm 30313
This theorem is referenced by:  mbfmfun  30316  isanmbfm  30318
  Copyright terms: Public domain W3C validator