MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm54.43 Structured version   Visualization version   Unicode version

Theorem pm54.43 8826
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. "From this proposition it will follow, when arithmetical addition has been defined, that 1+1=2." See http://en.wikipedia.org/wiki/Principia_Mathematica#Quotations. This theorem states that two sets of cardinality 1 are disjoint iff their union has cardinality 2.

Whitehead and Russell define 1 as the collection of all sets with cardinality 1 (i.e. all singletons; see card1 8794), so that their  A  e.  1 means, in our notation,  A  e.  { x  |  (
card `  x )  =  1o } which is the same as  A  ~~  1o by pm54.43lem 8825. We do not have several of their earlier lemmas available (which would otherwise be unused by our different approach to arithmetic), so our proof is longer. (It is also longer because we must show every detail.)

Theorem pm110.643 8999 shows the derivation of 1+1=2 for cardinal numbers from this theorem. (Contributed by NM, 4-Apr-2007.)

Assertion
Ref Expression
pm54.43  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )

Proof of Theorem pm54.43
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 7567 . . . . . . . 8  |-  1o  e.  On
21elexi 3213 . . . . . . 7  |-  1o  e.  _V
32ensn1 8020 . . . . . 6  |-  { 1o }  ~~  1o
43ensymi 8006 . . . . 5  |-  1o  ~~  { 1o }
5 entr 8008 . . . . 5  |-  ( ( B  ~~  1o  /\  1o  ~~  { 1o }
)  ->  B  ~~  { 1o } )
64, 5mpan2 707 . . . 4  |-  ( B 
~~  1o  ->  B  ~~  { 1o } )
71onirri 5834 . . . . . . 7  |-  -.  1o  e.  1o
8 disjsn 4246 . . . . . . 7  |-  ( ( 1o  i^i  { 1o } )  =  (/)  <->  -.  1o  e.  1o )
97, 8mpbir 221 . . . . . 6  |-  ( 1o 
i^i  { 1o } )  =  (/)
10 unen 8040 . . . . . 6  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  (
( A  i^i  B
)  =  (/)  /\  ( 1o  i^i  { 1o }
)  =  (/) ) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
119, 10mpanr2 720 . . . . 5  |-  ( ( ( A  ~~  1o  /\  B  ~~  { 1o } )  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) )
1211ex 450 . . . 4  |-  ( ( A  ~~  1o  /\  B  ~~  { 1o }
)  ->  ( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) ) )
136, 12sylan2 491 . . 3  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  ( 1o  u.  { 1o } ) ) )
14 df-2o 7561 . . . . 5  |-  2o  =  suc  1o
15 df-suc 5729 . . . . 5  |-  suc  1o  =  ( 1o  u.  { 1o } )
1614, 15eqtri 2644 . . . 4  |-  2o  =  ( 1o  u.  { 1o } )
1716breq2i 4661 . . 3  |-  ( ( A  u.  B ) 
~~  2o  <->  ( A  u.  B )  ~~  ( 1o  u.  { 1o }
) )
1813, 17syl6ibr 242 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  ->  ( A  u.  B )  ~~  2o ) )
19 en1 8023 . . 3  |-  ( A 
~~  1o  <->  E. x  A  =  { x } )
20 en1 8023 . . 3  |-  ( B 
~~  1o  <->  E. y  B  =  { y } )
21 unidm 3756 . . . . . . . . . . . . . 14  |-  ( { x }  u.  {
x } )  =  { x }
22 sneq 4187 . . . . . . . . . . . . . . 15  |-  ( x  =  y  ->  { x }  =  { y } )
2322uneq2d 3767 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  ( { x }  u.  { x } )  =  ( { x }  u.  { y } ) )
2421, 23syl5reqr 2671 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( { x }  u.  { y } )  =  { x } )
25 vex 3203 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
2625ensn1 8020 . . . . . . . . . . . . . 14  |-  { x }  ~~  1o
27 1sdom2 8159 . . . . . . . . . . . . . 14  |-  1o  ~<  2o
28 ensdomtr 8096 . . . . . . . . . . . . . 14  |-  ( ( { x }  ~~  1o  /\  1o  ~<  2o )  ->  { x }  ~<  2o )
2926, 27, 28mp2an 708 . . . . . . . . . . . . 13  |-  { x }  ~<  2o
3024, 29syl6eqbr 4692 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( { x }  u.  { y } )  ~<  2o )
31 sdomnen 7984 . . . . . . . . . . . 12  |-  ( ( { x }  u.  { y } )  ~<  2o  ->  -.  ( {
x }  u.  {
y } )  ~~  2o )
3230, 31syl 17 . . . . . . . . . . 11  |-  ( x  =  y  ->  -.  ( { x }  u.  { y } )  ~~  2o )
3332necon2ai 2823 . . . . . . . . . 10  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  x  =/=  y
)
34 disjsn2 4247 . . . . . . . . . 10  |-  ( x  =/=  y  ->  ( { x }  i^i  { y } )  =  (/) )
3533, 34syl 17 . . . . . . . . 9  |-  ( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) )
3635a1i 11 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( { x }  u.  { y } )  ~~  2o  ->  ( { x }  i^i  { y } )  =  (/) ) )
37 uneq12 3762 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  u.  B
)  =  ( { x }  u.  {
y } ) )
3837breq1d 4663 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  <->  ( { x }  u.  { y } )  ~~  2o ) )
39 ineq12 3809 . . . . . . . . 9  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( A  i^i  B
)  =  ( { x }  i^i  {
y } ) )
4039eqeq1d 2624 . . . . . . . 8  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  i^i  B )  =  (/)  <->  ( {
x }  i^i  {
y } )  =  (/) ) )
4136, 38, 403imtr4d 283 . . . . . . 7  |-  ( ( A  =  { x }  /\  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4241ex 450 . . . . . 6  |-  ( A  =  { x }  ->  ( B  =  {
y }  ->  (
( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4342exlimdv 1861 . . . . 5  |-  ( A  =  { x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4443exlimiv 1858 . . . 4  |-  ( E. x  A  =  {
x }  ->  ( E. y  B  =  { y }  ->  ( ( A  u.  B
)  ~~  2o  ->  ( A  i^i  B )  =  (/) ) ) )
4544imp 445 . . 3  |-  ( ( E. x  A  =  { x }  /\  E. y  B  =  {
y } )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4619, 20, 45syl2anb 496 . 2  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  u.  B )  ~~  2o  ->  ( A  i^i  B
)  =  (/) ) )
4718, 46impbid 202 1  |-  ( ( A  ~~  1o  /\  B  ~~  1o )  -> 
( ( A  i^i  B )  =  (/)  <->  ( A  u.  B )  ~~  2o ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653   Oncon0 5723   suc csuc 5725   1oc1o 7553   2oc2o 7554    ~~ cen 7952    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  pr2nelem  8827  pm110.643  8999
  Copyright terms: Public domain W3C validator