MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epfrc Structured version   Visualization version   Unicode version

Theorem epfrc 5100
Description: A subset of an epsilon-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.)
Hypothesis
Ref Expression
epfrc.1  |-  B  e. 
_V
Assertion
Ref Expression
epfrc  |-  ( (  _E  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Distinct variable groups:    x, A    x, B

Proof of Theorem epfrc
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 epfrc.1 . . 3  |-  B  e. 
_V
21frc 5080 . 2  |-  ( (  _E  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  { y  e.  B  |  y  _E  x }  =  (/) )
3 dfin5 3582 . . . . 5  |-  ( B  i^i  x )  =  { y  e.  B  |  y  e.  x }
4 epel 5032 . . . . . . 7  |-  ( y  _E  x  <->  y  e.  x )
54a1i 11 . . . . . 6  |-  ( y  e.  B  ->  (
y  _E  x  <->  y  e.  x ) )
65rabbiia 3185 . . . . 5  |-  { y  e.  B  |  y  _E  x }  =  { y  e.  B  |  y  e.  x }
73, 6eqtr4i 2647 . . . 4  |-  ( B  i^i  x )  =  { y  e.  B  |  y  _E  x }
87eqeq1i 2627 . . 3  |-  ( ( B  i^i  x )  =  (/)  <->  { y  e.  B  |  y  _E  x }  =  (/) )
98rexbii 3041 . 2  |-  ( E. x  e.  B  ( B  i^i  x )  =  (/)  <->  E. x  e.  B  { y  e.  B  |  y  _E  x }  =  (/) )
102, 9sylibr 224 1  |-  ( (  _E  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653    _E cep 5028    Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073
This theorem is referenced by:  wefrc  5108  onfr  5763  epfrs  8607
  Copyright terms: Public domain W3C validator