| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > onfr | Structured version Visualization version Unicode version | ||
| Description: The ordinal class is well-founded. This lemma is needed for ordon 6982 in order to eliminate the need for the Axiom of Regularity. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| onfr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfepfr 5099 |
. 2
| |
| 2 | n0 3931 |
. . . 4
| |
| 3 | ineq2 3808 |
. . . . . . . . . 10
| |
| 4 | 3 | eqeq1d 2624 |
. . . . . . . . 9
|
| 5 | 4 | rspcev 3309 |
. . . . . . . 8
|
| 6 | 5 | adantll 750 |
. . . . . . 7
|
| 7 | inss1 3833 |
. . . . . . . 8
| |
| 8 | ssel2 3598 |
. . . . . . . . . . 11
| |
| 9 | eloni 5733 |
. . . . . . . . . . 11
| |
| 10 | ordfr 5738 |
. . . . . . . . . . 11
| |
| 11 | 8, 9, 10 | 3syl 18 |
. . . . . . . . . 10
|
| 12 | inss2 3834 |
. . . . . . . . . . 11
| |
| 13 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | inex1 4799 |
. . . . . . . . . . . 12
|
| 15 | 14 | epfrc 5100 |
. . . . . . . . . . 11
|
| 16 | 12, 15 | mp3an2 1412 |
. . . . . . . . . 10
|
| 17 | 11, 16 | sylan 488 |
. . . . . . . . 9
|
| 18 | inass 3823 |
. . . . . . . . . . . . 13
| |
| 19 | 8, 9 | syl 17 |
. . . . . . . . . . . . . . . 16
|
| 20 | elinel2 3800 |
. . . . . . . . . . . . . . . 16
| |
| 21 | ordelss 5739 |
. . . . . . . . . . . . . . . 16
| |
| 22 | 19, 20, 21 | syl2an 494 |
. . . . . . . . . . . . . . 15
|
| 23 | sseqin2 3817 |
. . . . . . . . . . . . . . 15
| |
| 24 | 22, 23 | sylib 208 |
. . . . . . . . . . . . . 14
|
| 25 | 24 | ineq2d 3814 |
. . . . . . . . . . . . 13
|
| 26 | 18, 25 | syl5eq 2668 |
. . . . . . . . . . . 12
|
| 27 | 26 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 28 | 27 | rexbidva 3049 |
. . . . . . . . . 10
|
| 29 | 28 | adantr 481 |
. . . . . . . . 9
|
| 30 | 17, 29 | mpbid 222 |
. . . . . . . 8
|
| 31 | ssrexv 3667 |
. . . . . . . 8
| |
| 32 | 7, 30, 31 | mpsyl 68 |
. . . . . . 7
|
| 33 | 6, 32 | pm2.61dane 2881 |
. . . . . 6
|
| 34 | 33 | ex 450 |
. . . . 5
|
| 35 | 34 | exlimdv 1861 |
. . . 4
|
| 36 | 2, 35 | syl5bi 232 |
. . 3
|
| 37 | 36 | imp 445 |
. 2
|
| 38 | 1, 37 | mpgbir 1726 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 |
| This theorem is referenced by: ordon 6982 |
| Copyright terms: Public domain | W3C validator |