MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onfr Structured version   Visualization version   Unicode version

Theorem onfr 5763
Description: The ordinal class is well-founded. This lemma is needed for ordon 6982 in order to eliminate the need for the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
onfr  |-  _E  Fr  On

Proof of Theorem onfr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfepfr 5099 . 2  |-  (  _E  Fr  On  <->  A. x
( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
2 n0 3931 . . . 4  |-  ( x  =/=  (/)  <->  E. y  y  e.  x )
3 ineq2 3808 . . . . . . . . . 10  |-  ( z  =  y  ->  (
x  i^i  z )  =  ( x  i^i  y ) )
43eqeq1d 2624 . . . . . . . . 9  |-  ( z  =  y  ->  (
( x  i^i  z
)  =  (/)  <->  ( x  i^i  y )  =  (/) ) )
54rspcev 3309 . . . . . . . 8  |-  ( ( y  e.  x  /\  ( x  i^i  y
)  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
65adantll 750 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
7 inss1 3833 . . . . . . . 8  |-  ( x  i^i  y )  C_  x
8 ssel2 3598 . . . . . . . . . . 11  |-  ( ( x  C_  On  /\  y  e.  x )  ->  y  e.  On )
9 eloni 5733 . . . . . . . . . . 11  |-  ( y  e.  On  ->  Ord  y )
10 ordfr 5738 . . . . . . . . . . 11  |-  ( Ord  y  ->  _E  Fr  y )
118, 9, 103syl 18 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  _E  Fr  y )
12 inss2 3834 . . . . . . . . . . 11  |-  ( x  i^i  y )  C_  y
13 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
1413inex1 4799 . . . . . . . . . . . 12  |-  ( x  i^i  y )  e. 
_V
1514epfrc 5100 . . . . . . . . . . 11  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  C_  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1612, 15mp3an2 1412 . . . . . . . . . 10  |-  ( (  _E  Fr  y  /\  ( x  i^i  y
)  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
1711, 16sylan 488 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/) )
18 inass 3823 . . . . . . . . . . . . 13  |-  ( ( x  i^i  y )  i^i  z )  =  ( x  i^i  (
y  i^i  z )
)
198, 9syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( x  C_  On  /\  y  e.  x )  ->  Ord  y )
20 elinel2 3800 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( x  i^i  y )  ->  z  e.  y )
21 ordelss 5739 . . . . . . . . . . . . . . . 16  |-  ( ( Ord  y  /\  z  e.  y )  ->  z  C_  y )
2219, 20, 21syl2an 494 . . . . . . . . . . . . . . 15  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  z  C_  y )
23 sseqin2 3817 . . . . . . . . . . . . . . 15  |-  ( z 
C_  y  <->  ( y  i^i  z )  =  z )
2422, 23sylib 208 . . . . . . . . . . . . . 14  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( y  i^i  z )  =  z )
2524ineq2d 3814 . . . . . . . . . . . . 13  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( x  i^i  ( y  i^i  z
) )  =  ( x  i^i  z ) )
2618, 25syl5eq 2668 . . . . . . . . . . . 12  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
x  i^i  y )  i^i  z )  =  ( x  i^i  z ) )
2726eqeq1d 2624 . . . . . . . . . . 11  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  z  e.  ( x  i^i  y ) )  ->  ( (
( x  i^i  y
)  i^i  z )  =  (/)  <->  ( x  i^i  z )  =  (/) ) )
2827rexbidva 3049 . . . . . . . . . 10  |-  ( ( x  C_  On  /\  y  e.  x )  ->  ( E. z  e.  (
x  i^i  y )
( ( x  i^i  y )  i^i  z
)  =  (/)  <->  E. z  e.  ( x  i^i  y
) ( x  i^i  z )  =  (/) ) )
2928adantr 481 . . . . . . . . 9  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  -> 
( E. z  e.  ( x  i^i  y
) ( ( x  i^i  y )  i^i  z )  =  (/)  <->  E. z  e.  ( x  i^i  y ) ( x  i^i  z )  =  (/) ) )
3017, 29mpbid 222 . . . . . . . 8  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/) )
31 ssrexv 3667 . . . . . . . 8  |-  ( ( x  i^i  y ) 
C_  x  ->  ( E. z  e.  (
x  i^i  y )
( x  i^i  z
)  =  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
327, 30, 31mpsyl 68 . . . . . . 7  |-  ( ( ( x  C_  On  /\  y  e.  x )  /\  ( x  i^i  y )  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) )
336, 32pm2.61dane 2881 . . . . . 6  |-  ( ( x  C_  On  /\  y  e.  x )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
3433ex 450 . . . . 5  |-  ( x 
C_  On  ->  ( y  e.  x  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3534exlimdv 1861 . . . 4  |-  ( x 
C_  On  ->  ( E. y  y  e.  x  ->  E. z  e.  x  ( x  i^i  z
)  =  (/) ) )
362, 35syl5bi 232 . . 3  |-  ( x 
C_  On  ->  ( x  =/=  (/)  ->  E. z  e.  x  ( x  i^i  z )  =  (/) ) )
3736imp 445 . 2  |-  ( ( x  C_  On  /\  x  =/=  (/) )  ->  E. z  e.  x  ( x  i^i  z )  =  (/) )
381, 37mpgbir 1726 1  |-  _E  Fr  On
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913    i^i cin 3573    C_ wss 3574   (/)c0 3915    _E cep 5028    Fr wfr 5070   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  ordon  6982
  Copyright terms: Public domain W3C validator