Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsumcvg4 Structured version   Visualization version   Unicode version

Theorem fsumcvg4 29996
Description: A serie with finite support is a finite sum, and therefore converges. (Contributed by Thierry Arnoux, 6-Sep-2017.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
fsumcvg4.s  |-  S  =  ( ZZ>= `  M )
fsumcvg4.m  |-  ( ph  ->  M  e.  ZZ )
fsumcvg4.c  |-  ( ph  ->  F : S --> CC )
fsumcvg4.f  |-  ( ph  ->  ( `' F "
( CC  \  {
0 } ) )  e.  Fin )
Assertion
Ref Expression
fsumcvg4  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )

Proof of Theorem fsumcvg4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fsumcvg4.s . 2  |-  S  =  ( ZZ>= `  M )
2 fsumcvg4.m . 2  |-  ( ph  ->  M  e.  ZZ )
3 fsumcvg4.f . 2  |-  ( ph  ->  ( `' F "
( CC  \  {
0 } ) )  e.  Fin )
4 fsumcvg4.c . . . . 5  |-  ( ph  ->  F : S --> CC )
5 ffun 6048 . . . . 5  |-  ( F : S --> CC  ->  Fun 
F )
6 difpreima 6343 . . . . 5  |-  ( Fun 
F  ->  ( `' F " ( CC  \  { 0 } ) )  =  ( ( `' F " CC ) 
\  ( `' F " { 0 } ) ) )
74, 5, 63syl 18 . . . 4  |-  ( ph  ->  ( `' F "
( CC  \  {
0 } ) )  =  ( ( `' F " CC ) 
\  ( `' F " { 0 } ) ) )
8 difss 3737 . . . 4  |-  ( ( `' F " CC ) 
\  ( `' F " { 0 } ) )  C_  ( `' F " CC )
97, 8syl6eqss 3655 . . 3  |-  ( ph  ->  ( `' F "
( CC  \  {
0 } ) ) 
C_  ( `' F " CC ) )
10 fimacnv 6347 . . . 4  |-  ( F : S --> CC  ->  ( `' F " CC )  =  S )
114, 10syl 17 . . 3  |-  ( ph  ->  ( `' F " CC )  =  S
)
129, 11sseqtrd 3641 . 2  |-  ( ph  ->  ( `' F "
( CC  \  {
0 } ) ) 
C_  S )
13 exmidd 432 . . . 4  |-  ( (
ph  /\  k  e.  S )  ->  (
k  e.  ( `' F " ( CC 
\  { 0 } ) )  \/  -.  k  e.  ( `' F " ( CC  \  { 0 } ) ) ) )
14 eqid 2622 . . . . . . 7  |-  ( F `
 k )  =  ( F `  k
)
1514biantru 526 . . . . . 6  |-  ( k  e.  ( `' F " ( CC  \  {
0 } ) )  <-> 
( k  e.  ( `' F " ( CC 
\  { 0 } ) )  /\  ( F `  k )  =  ( F `  k ) ) )
1615a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  S )  ->  (
k  e.  ( `' F " ( CC 
\  { 0 } ) )  <->  ( k  e.  ( `' F "
( CC  \  {
0 } ) )  /\  ( F `  k )  =  ( F `  k ) ) ) )
17 fvex 6201 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  M )  e.  _V
181, 17eqeltri 2697 . . . . . . . . . . . . . 14  |-  S  e. 
_V
1918a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  _V )
20 0nn0 11307 . . . . . . . . . . . . . 14  |-  0  e.  NN0
2120a1i 11 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  NN0 )
22 eqid 2622 . . . . . . . . . . . . . 14  |-  ( CC 
\  { 0 } )  =  ( CC 
\  { 0 } )
2322ffs2 29503 . . . . . . . . . . . . 13  |-  ( ( S  e.  _V  /\  0  e.  NN0  /\  F : S --> CC )  -> 
( F supp  0 )  =  ( `' F " ( CC  \  {
0 } ) ) )
2419, 21, 4, 23syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( F supp  0 )  =  ( `' F " ( CC  \  {
0 } ) ) )
25 ffn 6045 . . . . . . . . . . . . . 14  |-  ( F : S --> CC  ->  F  Fn  S )
264, 25syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  F  Fn  S )
27 suppvalfn 7302 . . . . . . . . . . . . 13  |-  ( ( F  Fn  S  /\  S  e.  _V  /\  0  e.  NN0 )  ->  ( F supp  0 )  =  {
k  e.  S  | 
( F `  k
)  =/=  0 } )
2826, 19, 21, 27syl3anc 1326 . . . . . . . . . . . 12  |-  ( ph  ->  ( F supp  0 )  =  { k  e.  S  |  ( F `
 k )  =/=  0 } )
2924, 28eqtr3d 2658 . . . . . . . . . . 11  |-  ( ph  ->  ( `' F "
( CC  \  {
0 } ) )  =  { k  e.  S  |  ( F `
 k )  =/=  0 } )
3029eleq2d 2687 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  ( `' F " ( CC 
\  { 0 } ) )  <->  k  e.  { k  e.  S  | 
( F `  k
)  =/=  0 } ) )
31 rabid 3116 . . . . . . . . . 10  |-  ( k  e.  { k  e.  S  |  ( F `
 k )  =/=  0 }  <->  ( k  e.  S  /\  ( F `  k )  =/=  0 ) )
3230, 31syl6bb 276 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  ( `' F " ( CC 
\  { 0 } ) )  <->  ( k  e.  S  /\  ( F `  k )  =/=  0 ) ) )
3332baibd 948 . . . . . . . 8  |-  ( (
ph  /\  k  e.  S )  ->  (
k  e.  ( `' F " ( CC 
\  { 0 } ) )  <->  ( F `  k )  =/=  0
) )
3433necon2bbid 2837 . . . . . . 7  |-  ( (
ph  /\  k  e.  S )  ->  (
( F `  k
)  =  0  <->  -.  k  e.  ( `' F " ( CC  \  { 0 } ) ) ) )
3534biimprd 238 . . . . . 6  |-  ( (
ph  /\  k  e.  S )  ->  ( -.  k  e.  ( `' F " ( CC 
\  { 0 } ) )  ->  ( F `  k )  =  0 ) )
3635pm4.71d 666 . . . . 5  |-  ( (
ph  /\  k  e.  S )  ->  ( -.  k  e.  ( `' F " ( CC 
\  { 0 } ) )  <->  ( -.  k  e.  ( `' F " ( CC  \  { 0 } ) )  /\  ( F `
 k )  =  0 ) ) )
3716, 36orbi12d 746 . . . 4  |-  ( (
ph  /\  k  e.  S )  ->  (
( k  e.  ( `' F " ( CC 
\  { 0 } ) )  \/  -.  k  e.  ( `' F " ( CC  \  { 0 } ) ) )  <->  ( (
k  e.  ( `' F " ( CC 
\  { 0 } ) )  /\  ( F `  k )  =  ( F `  k ) )  \/  ( -.  k  e.  ( `' F "
( CC  \  {
0 } ) )  /\  ( F `  k )  =  0 ) ) ) )
3813, 37mpbid 222 . . 3  |-  ( (
ph  /\  k  e.  S )  ->  (
( k  e.  ( `' F " ( CC 
\  { 0 } ) )  /\  ( F `  k )  =  ( F `  k ) )  \/  ( -.  k  e.  ( `' F "
( CC  \  {
0 } ) )  /\  ( F `  k )  =  0 ) ) )
39 eqif 4126 . . 3  |-  ( ( F `  k )  =  if ( k  e.  ( `' F " ( CC  \  {
0 } ) ) ,  ( F `  k ) ,  0 )  <->  ( ( k  e.  ( `' F " ( CC  \  {
0 } ) )  /\  ( F `  k )  =  ( F `  k ) )  \/  ( -.  k  e.  ( `' F " ( CC 
\  { 0 } ) )  /\  ( F `  k )  =  0 ) ) )
4038, 39sylibr 224 . 2  |-  ( (
ph  /\  k  e.  S )  ->  ( F `  k )  =  if ( k  e.  ( `' F "
( CC  \  {
0 } ) ) ,  ( F `  k ) ,  0 ) )
4112sselda 3603 . . 3  |-  ( (
ph  /\  k  e.  ( `' F " ( CC 
\  { 0 } ) ) )  -> 
k  e.  S )
424ffvelrnda 6359 . . 3  |-  ( (
ph  /\  k  e.  S )  ->  ( F `  k )  e.  CC )
4341, 42syldan 487 . 2  |-  ( (
ph  /\  k  e.  ( `' F " ( CC 
\  { 0 } ) ) )  -> 
( F `  k
)  e.  CC )
441, 2, 3, 12, 40, 43fsumcvg3 14460 1  |-  ( ph  ->  seq M (  +  ,  F )  e. 
dom 
~~>  )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   {crab 2916   _Vcvv 3200    \ cdif 3571   ifcif 4086   {csn 4177   `'ccnv 5113   dom cdm 5114   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   supp csupp 7295   Fincfn 7955   CCcc 9934   0cc0 9936    + caddc 9939   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687    seqcseq 12801    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219
This theorem is referenced by:  eulerpartlems  30422
  Copyright terms: Public domain W3C validator