| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem29 | Structured version Visualization version Unicode version | ||
| Description: Lemma for fin23 9211. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.) |
| Ref | Expression |
|---|---|
| fin23lem.a |
|
| fin23lem17.f |
|
| fin23lem.b |
|
| fin23lem.c |
|
| fin23lem.d |
|
| fin23lem.e |
|
| Ref | Expression |
|---|---|
| fin23lem29 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.e |
. 2
| |
| 2 | eqif 4126 |
. . 3
| |
| 3 | 2 | biimpi 206 |
. 2
|
| 4 | rneq 5351 |
. . . . . 6
| |
| 5 | 4 | unieqd 4446 |
. . . . 5
|
| 6 | rncoss 5386 |
. . . . . 6
| |
| 7 | 6 | unissi 4461 |
. . . . 5
|
| 8 | 5, 7 | syl6eqss 3655 |
. . . 4
|
| 9 | 8 | adantl 482 |
. . 3
|
| 10 | rneq 5351 |
. . . . . 6
| |
| 11 | 10 | unieqd 4446 |
. . . . 5
|
| 12 | rncoss 5386 |
. . . . . . 7
| |
| 13 | 12 | unissi 4461 |
. . . . . 6
|
| 14 | unissb 4469 |
. . . . . . 7
| |
| 15 | abid 2610 |
. . . . . . . . 9
| |
| 16 | fvssunirn 6217 |
. . . . . . . . . . . . 13
| |
| 17 | 16 | a1i 11 |
. . . . . . . . . . . 12
|
| 18 | 17 | ssdifssd 3748 |
. . . . . . . . . . 11
|
| 19 | sseq1 3626 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | syl5ibrcom 237 |
. . . . . . . . . 10
|
| 21 | 20 | rexlimiv 3027 |
. . . . . . . . 9
|
| 22 | 15, 21 | sylbi 207 |
. . . . . . . 8
|
| 23 | eqid 2622 |
. . . . . . . . 9
| |
| 24 | 23 | rnmpt 5371 |
. . . . . . . 8
|
| 25 | 22, 24 | eleq2s 2719 |
. . . . . . 7
|
| 26 | 14, 25 | mprgbir 2927 |
. . . . . 6
|
| 27 | 13, 26 | sstri 3612 |
. . . . 5
|
| 28 | 11, 27 | syl6eqss 3655 |
. . . 4
|
| 29 | 28 | adantl 482 |
. . 3
|
| 30 | 9, 29 | jaoi 394 |
. 2
|
| 31 | 1, 3, 30 | mp2b 10 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-iota 5851 df-fv 5896 |
| This theorem is referenced by: fin23lem31 9165 |
| Copyright terms: Public domain | W3C validator |