MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem29 Structured version   Visualization version   Unicode version

Theorem fin23lem29 9163
Description: Lemma for fin23 9211. The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypotheses
Ref Expression
fin23lem.a  |-  U  = seq𝜔 ( ( i  e.  om ,  u  e.  _V  |->  if ( ( ( t `
 i )  i^i  u )  =  (/) ,  u ,  ( ( t `  i )  i^i  u ) ) ) ,  U. ran  t )
fin23lem17.f  |-  F  =  { g  |  A. a  e.  ( ~P g  ^m  om ) ( A. x  e.  om  ( a `  suc  x )  C_  (
a `  x )  ->  |^| ran  a  e. 
ran  a ) }
fin23lem.b  |-  P  =  { v  e.  om  |  |^| ran  U  C_  ( t `  v
) }
fin23lem.c  |-  Q  =  ( w  e.  om  |->  ( iota_ x  e.  P  ( x  i^i  P ) 
~~  w ) )
fin23lem.d  |-  R  =  ( w  e.  om  |->  ( iota_ x  e.  ( om  \  P ) ( x  i^i  ( om  \  P ) ) 
~~  w ) )
fin23lem.e  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
Assertion
Ref Expression
fin23lem29  |-  U. ran  Z 
C_  U. ran  t
Distinct variable groups:    g, i,
t, u, v, x, z, a    F, a, t    w, a, x, z, P    v, a, R, i, u    U, a, i, u, v, z    Z, a    g, a
Allowed substitution hints:    P( v, u, t, g, i)    Q( x, z, w, v, u, t, g, i, a)    R( x, z, w, t, g)    U( x, w, t, g)    F( x, z, w, v, u, g, i)    Z( x, z, w, v, u, t, g, i)

Proof of Theorem fin23lem29
StepHypRef Expression
1 fin23lem.e . 2  |-  Z  =  if ( P  e. 
Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q ) )
2 eqif 4126 . . 3  |-  ( Z  =  if ( P  e.  Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q ) )  <->  ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  \/  ( -.  P  e. 
Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) ) ) )
32biimpi 206 . 2  |-  ( Z  =  if ( P  e.  Fin ,  ( t  o.  R ) ,  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q ) )  ->  ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  \/  ( -.  P  e. 
Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) ) ) )
4 rneq 5351 . . . . . 6  |-  ( Z  =  ( t  o.  R )  ->  ran  Z  =  ran  ( t  o.  R ) )
54unieqd 4446 . . . . 5  |-  ( Z  =  ( t  o.  R )  ->  U. ran  Z  =  U. ran  (
t  o.  R ) )
6 rncoss 5386 . . . . . 6  |-  ran  (
t  o.  R ) 
C_  ran  t
76unissi 4461 . . . . 5  |-  U. ran  ( t  o.  R
)  C_  U. ran  t
85, 7syl6eqss 3655 . . . 4  |-  ( Z  =  ( t  o.  R )  ->  U. ran  Z 
C_  U. ran  t )
98adantl 482 . . 3  |-  ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  ->  U. ran  Z  C_  U. ran  t )
10 rneq 5351 . . . . . 6  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  ran  Z  =  ran  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) )
1110unieqd 4446 . . . . 5  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  U. ran  Z  = 
U. ran  ( (
z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  o.  Q
) )
12 rncoss 5386 . . . . . . 7  |-  ran  (
( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  o.  Q )  C_  ran  ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )
1312unissi 4461 . . . . . 6  |-  U. ran  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q )  C_  U.
ran  ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )
14 unissb 4469 . . . . . . 7  |-  ( U. ran  ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  C_  U.
ran  t  <->  A. a  e.  ran  ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) ) a  C_  U. ran  t
)
15 abid 2610 . . . . . . . . 9  |-  ( a  e.  { a  |  E. z  e.  P  a  =  ( (
t `  z )  \  |^| ran  U ) }  <->  E. z  e.  P  a  =  ( (
t `  z )  \  |^| ran  U ) )
16 fvssunirn 6217 . . . . . . . . . . . . 13  |-  ( t `
 z )  C_  U.
ran  t
1716a1i 11 . . . . . . . . . . . 12  |-  ( z  e.  P  ->  (
t `  z )  C_ 
U. ran  t )
1817ssdifssd 3748 . . . . . . . . . . 11  |-  ( z  e.  P  ->  (
( t `  z
)  \  |^| ran  U
)  C_  U. ran  t
)
19 sseq1 3626 . . . . . . . . . . 11  |-  ( a  =  ( ( t `
 z )  \  |^| ran  U )  -> 
( a  C_  U. ran  t 
<->  ( ( t `  z )  \  |^| ran 
U )  C_  U. ran  t ) )
2018, 19syl5ibrcom 237 . . . . . . . . . 10  |-  ( z  e.  P  ->  (
a  =  ( ( t `  z ) 
\  |^| ran  U )  ->  a  C_  U. ran  t ) )
2120rexlimiv 3027 . . . . . . . . 9  |-  ( E. z  e.  P  a  =  ( ( t `
 z )  \  |^| ran  U )  -> 
a  C_  U. ran  t
)
2215, 21sylbi 207 . . . . . . . 8  |-  ( a  e.  { a  |  E. z  e.  P  a  =  ( (
t `  z )  \  |^| ran  U ) }  ->  a  C_  U.
ran  t )
23 eqid 2622 . . . . . . . . 9  |-  ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  =  ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )
2423rnmpt 5371 . . . . . . . 8  |-  ran  (
z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  =  {
a  |  E. z  e.  P  a  =  ( ( t `  z )  \  |^| ran 
U ) }
2522, 24eleq2s 2719 . . . . . . 7  |-  ( a  e.  ran  ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  ->  a  C_  U.
ran  t )
2614, 25mprgbir 2927 . . . . . 6  |-  U. ran  ( z  e.  P  |->  ( ( t `  z )  \  |^| ran 
U ) )  C_  U.
ran  t
2713, 26sstri 3612 . . . . 5  |-  U. ran  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q )  C_  U.
ran  t
2811, 27syl6eqss 3655 . . . 4  |-  ( Z  =  ( ( z  e.  P  |->  ( ( t `  z ) 
\  |^| ran  U ) )  o.  Q )  ->  U. ran  Z  C_  U.
ran  t )
2928adantl 482 . . 3  |-  ( ( -.  P  e.  Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `  z
)  \  |^| ran  U
) )  o.  Q
) )  ->  U. ran  Z 
C_  U. ran  t )
309, 29jaoi 394 . 2  |-  ( ( ( P  e.  Fin  /\  Z  =  ( t  o.  R ) )  \/  ( -.  P  e.  Fin  /\  Z  =  ( ( z  e.  P  |->  ( ( t `
 z )  \  |^| ran  U ) )  o.  Q ) ) )  ->  U. ran  Z  C_ 
U. ran  t )
311, 3, 30mp2b 10 1  |-  U. ran  Z 
C_  U. ran  t
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   class class class wbr 4653    |-> cmpt 4729   ran crn 5115    o. ccom 5118   suc csuc 5725   ` cfv 5888   iota_crio 6610  (class class class)co 6650    |-> cmpt2 6652   omcom 7065  seq𝜔cseqom 7542    ^m cmap 7857    ~~ cen 7952   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fv 5896
This theorem is referenced by:  fin23lem31  9165
  Copyright terms: Public domain W3C validator