Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsnf Structured version   Visualization version   Unicode version

Theorem esumsnf 30126
Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
esumsnf.0  |-  F/_ k B
esumsnf.1  |-  ( (
ph  /\  k  =  M )  ->  A  =  B )
esumsnf.2  |-  ( ph  ->  M  e.  V )
esumsnf.3  |-  ( ph  ->  B  e.  ( 0 [,] +oo ) )
Assertion
Ref Expression
esumsnf  |-  ( ph  -> Σ* k  e.  { M } A  =  B )
Distinct variable groups:    k, M    ph, k
Allowed substitution hints:    A( k)    B( k)    V( k)

Proof of Theorem esumsnf
Dummy variables  x  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esum 30090 . . 3  |- Σ* k  e.  { M } A  =  U. ( ( RR*ss  (
0 [,] +oo )
) tsums  ( k  e. 
{ M }  |->  A ) )
21a1i 11 . 2  |-  ( ph  -> Σ* k  e.  { M } A  =  U. (
( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  { M }  |->  A ) ) )
3 eqid 2622 . . . 4  |-  ( RR*ss  ( 0 [,] +oo ) )  =  (
RR*ss  ( 0 [,] +oo ) )
4 snfi 8038 . . . . 5  |-  { M }  e.  Fin
54a1i 11 . . . 4  |-  ( ph  ->  { M }  e.  Fin )
6 elsni 4194 . . . . . . . . 9  |-  ( k  e.  { M }  ->  k  =  M )
7 esumsnf.1 . . . . . . . . 9  |-  ( (
ph  /\  k  =  M )  ->  A  =  B )
86, 7sylan2 491 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { M } )  ->  A  =  B )
98mpteq2dva 4744 . . . . . . 7  |-  ( ph  ->  ( k  e.  { M }  |->  A )  =  ( k  e. 
{ M }  |->  B ) )
10 esumsnf.2 . . . . . . . 8  |-  ( ph  ->  M  e.  V )
11 esumsnf.3 . . . . . . . 8  |-  ( ph  ->  B  e.  ( 0 [,] +oo ) )
12 fmptsn 6433 . . . . . . . . 9  |-  ( ( M  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  { <. M ,  B >. }  =  ( l  e.  { M }  |->  B ) )
13 nfcv 2764 . . . . . . . . . 10  |-  F/_ l B
14 esumsnf.0 . . . . . . . . . 10  |-  F/_ k B
15 eqidd 2623 . . . . . . . . . 10  |-  ( k  =  l  ->  B  =  B )
1613, 14, 15cbvmpt 4749 . . . . . . . . 9  |-  ( k  e.  { M }  |->  B )  =  ( l  e.  { M }  |->  B )
1712, 16syl6eqr 2674 . . . . . . . 8  |-  ( ( M  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  { <. M ,  B >. }  =  ( k  e.  { M }  |->  B ) )
1810, 11, 17syl2anc 693 . . . . . . 7  |-  ( ph  ->  { <. M ,  B >. }  =  ( k  e.  { M }  |->  B ) )
199, 18eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( k  e.  { M }  |->  A )  =  { <. M ,  B >. } )
20 fsng 6404 . . . . . . 7  |-  ( ( M  e.  V  /\  B  e.  ( 0 [,] +oo ) )  ->  ( ( k  e.  { M }  |->  A ) : { M } --> { B }  <->  ( k  e.  { M }  |->  A )  =  { <. M ,  B >. } ) )
2110, 11, 20syl2anc 693 . . . . . 6  |-  ( ph  ->  ( ( k  e. 
{ M }  |->  A ) : { M }
--> { B }  <->  ( k  e.  { M }  |->  A )  =  { <. M ,  B >. } ) )
2219, 21mpbird 247 . . . . 5  |-  ( ph  ->  ( k  e.  { M }  |->  A ) : { M } --> { B } )
2311snssd 4340 . . . . 5  |-  ( ph  ->  { B }  C_  ( 0 [,] +oo ) )
2422, 23fssd 6057 . . . 4  |-  ( ph  ->  ( k  e.  { M }  |->  A ) : { M } --> ( 0 [,] +oo ) )
25 xrltso 11974 . . . . . . 7  |-  <  Or  RR*
2625a1i 11 . . . . . 6  |-  ( ph  ->  <  Or  RR* )
27 0xr 10086 . . . . . . 7  |-  0  e.  RR*
2827a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  RR* )
29 elxrge0 12281 . . . . . . . 8  |-  ( B  e.  ( 0 [,] +oo )  <->  ( B  e. 
RR*  /\  0  <_  B ) )
3011, 29sylib 208 . . . . . . 7  |-  ( ph  ->  ( B  e.  RR*  /\  0  <_  B )
)
3130simpld 475 . . . . . 6  |-  ( ph  ->  B  e.  RR* )
32 suppr 8377 . . . . . 6  |-  ( (  <  Or  RR*  /\  0  e.  RR*  /\  B  e. 
RR* )  ->  sup ( { 0 ,  B } ,  RR* ,  <  )  =  if ( B  <  0 ,  0 ,  B ) )
3326, 28, 31, 32syl3anc 1326 . . . . 5  |-  ( ph  ->  sup ( { 0 ,  B } ,  RR* ,  <  )  =  if ( B  <  0 ,  0 ,  B ) )
34 0fin 8188 . . . . . . . . . . 11  |-  (/)  e.  Fin
3534a1i 11 . . . . . . . . . 10  |-  ( ph  -> 
(/)  e.  Fin )
36 reseq2 5391 . . . . . . . . . . . . . 14  |-  ( x  =  (/)  ->  ( ( k  e.  { M }  |->  A )  |`  x )  =  ( ( k  e.  { M }  |->  A )  |`  (/) ) )
37 res0 5400 . . . . . . . . . . . . . 14  |-  ( ( k  e.  { M }  |->  A )  |`  (/) )  =  (/)
3836, 37syl6eq 2672 . . . . . . . . . . . . 13  |-  ( x  =  (/)  ->  ( ( k  e.  { M }  |->  A )  |`  x )  =  (/) )
3938oveq2d 6666 . . . . . . . . . . . 12  |-  ( x  =  (/)  ->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
)  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  (/) ) )
40 xrge00 29686 . . . . . . . . . . . . 13  |-  0  =  ( 0g `  ( RR*ss  ( 0 [,] +oo ) ) )
4140gsum0 17278 . . . . . . . . . . . 12  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  (/) )  =  0
4239, 41syl6eq 2672 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
)  =  0 )
4342adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  (/) )  ->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
)  =  0 )
44 reseq2 5391 . . . . . . . . . . . . 13  |-  ( x  =  { M }  ->  ( ( k  e. 
{ M }  |->  A )  |`  x )  =  ( ( k  e.  { M }  |->  A )  |`  { M } ) )
45 ssid 3624 . . . . . . . . . . . . . 14  |-  { M }  C_  { M }
46 resmpt 5449 . . . . . . . . . . . . . 14  |-  ( { M }  C_  { M }  ->  ( ( k  e.  { M }  |->  A )  |`  { M } )  =  ( k  e.  { M }  |->  A ) )
4745, 46ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( k  e.  { M }  |->  A )  |`  { M } )  =  ( k  e.  { M }  |->  A )
4844, 47syl6eq 2672 . . . . . . . . . . . 12  |-  ( x  =  { M }  ->  ( ( k  e. 
{ M }  |->  A )  |`  x )  =  ( k  e. 
{ M }  |->  A ) )
4948oveq2d 6666 . . . . . . . . . . 11  |-  ( x  =  { M }  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
)  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( k  e.  { M }  |->  A ) ) )
50 xrge0base 29685 . . . . . . . . . . . 12  |-  ( 0 [,] +oo )  =  ( Base `  ( RR*ss  ( 0 [,] +oo ) ) )
51 xrge0cmn 19788 . . . . . . . . . . . . . 14  |-  ( RR*ss  ( 0 [,] +oo ) )  e. CMnd
52 cmnmnd 18208 . . . . . . . . . . . . . 14  |-  ( (
RR*ss  ( 0 [,] +oo ) )  e. CMnd  ->  (
RR*ss  ( 0 [,] +oo ) )  e.  Mnd )
5351, 52ax-mp 5 . . . . . . . . . . . . 13  |-  ( RR*ss  ( 0 [,] +oo ) )  e.  Mnd
5453a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  ( RR*ss  ( 0 [,] +oo ) )  e.  Mnd )
55 nfv 1843 . . . . . . . . . . . 12  |-  F/ k
ph
5650, 54, 10, 11, 7, 55, 14gsumsnfd 18351 . . . . . . . . . . 11  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( k  e.  { M }  |->  A ) )  =  B )
5749, 56sylan9eqr 2678 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  { M } )  -> 
( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
)  =  B )
5835, 5, 28, 11, 43, 57fmptpr 6438 . . . . . . . . 9  |-  ( ph  ->  { <. (/) ,  0 >. ,  <. { M } ,  B >. }  =  ( x  e.  { (/) ,  { M } }  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) ) )
59 pwsn 4428 . . . . . . . . . . . . 13  |-  ~P { M }  =  { (/)
,  { M } }
60 prssi 4353 . . . . . . . . . . . . . 14  |-  ( (
(/)  e.  Fin  /\  { M }  e.  Fin )  ->  { (/) ,  { M } }  C_  Fin )
6134, 4, 60mp2an 708 . . . . . . . . . . . . 13  |-  { (/) ,  { M } }  C_ 
Fin
6259, 61eqsstri 3635 . . . . . . . . . . . 12  |-  ~P { M }  C_  Fin
63 df-ss 3588 . . . . . . . . . . . 12  |-  ( ~P { M }  C_  Fin 
<->  ( ~P { M }  i^i  Fin )  =  ~P { M }
)
6462, 63mpbi 220 . . . . . . . . . . 11  |-  ( ~P { M }  i^i  Fin )  =  ~P { M }
6564, 59eqtri 2644 . . . . . . . . . 10  |-  ( ~P { M }  i^i  Fin )  =  { (/) ,  { M } }
66 eqid 2622 . . . . . . . . . 10  |-  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
)  =  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
)
6765, 66mpteq12i 4742 . . . . . . . . 9  |-  ( x  e.  ( ~P { M }  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) )  =  ( x  e.  { (/) ,  { M } }  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) )
6858, 67syl6eqr 2674 . . . . . . . 8  |-  ( ph  ->  { <. (/) ,  0 >. ,  <. { M } ,  B >. }  =  ( x  e.  ( ~P { M }  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) ) )
6968rneqd 5353 . . . . . . 7  |-  ( ph  ->  ran  { <. (/) ,  0
>. ,  <. { M } ,  B >. }  =  ran  ( x  e.  ( ~P { M }  i^i  Fin )  |->  ( ( RR*ss  (
0 [,] +oo )
)  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) ) )
70 rnpropg 5615 . . . . . . . 8  |-  ( (
(/)  e.  Fin  /\  { M }  e.  Fin )  ->  ran  { <. (/) ,  0
>. ,  <. { M } ,  B >. }  =  { 0 ,  B } )
7135, 5, 70syl2anc 693 . . . . . . 7  |-  ( ph  ->  ran  { <. (/) ,  0
>. ,  <. { M } ,  B >. }  =  { 0 ,  B } )
7269, 71eqtr3d 2658 . . . . . 6  |-  ( ph  ->  ran  ( x  e.  ( ~P { M }  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) ) 
gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) )  =  {
0 ,  B }
)
7372supeq1d 8352 . . . . 5  |-  ( ph  ->  sup ( ran  (
x  e.  ( ~P { M }  i^i  Fin )  |->  ( ( RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) ) ,  RR* ,  <  )  =  sup ( { 0 ,  B } ,  RR* ,  <  ) )
7430simprd 479 . . . . . . . . 9  |-  ( ph  ->  0  <_  B )
75 xrlenlt 10103 . . . . . . . . . 10  |-  ( ( 0  e.  RR*  /\  B  e.  RR* )  ->  (
0  <_  B  <->  -.  B  <  0 ) )
7628, 31, 75syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( 0  <_  B  <->  -.  B  <  0 ) )
7774, 76mpbid 222 . . . . . . . 8  |-  ( ph  ->  -.  B  <  0
)
78 eqidd 2623 . . . . . . . 8  |-  ( ph  ->  B  =  B )
7977, 78jca 554 . . . . . . 7  |-  ( ph  ->  ( -.  B  <  0  /\  B  =  B ) )
8079olcd 408 . . . . . 6  |-  ( ph  ->  ( ( B  <  0  /\  B  =  0 )  \/  ( -.  B  <  0  /\  B  =  B
) ) )
81 eqif 4126 . . . . . 6  |-  ( B  =  if ( B  <  0 ,  0 ,  B )  <->  ( ( B  <  0  /\  B  =  0 )  \/  ( -.  B  <  0  /\  B  =  B ) ) )
8280, 81sylibr 224 . . . . 5  |-  ( ph  ->  B  =  if ( B  <  0 ,  0 ,  B ) )
8333, 73, 823eqtr4rd 2667 . . . 4  |-  ( ph  ->  B  =  sup ( ran  ( x  e.  ( ~P { M }  i^i  Fin )  |->  ( (
RR*ss  ( 0 [,] +oo ) )  gsumg  ( ( k  e. 
{ M }  |->  A )  |`  x )
) ) ,  RR* ,  <  ) )
843, 5, 24, 83xrge0tsmsd 29785 . . 3  |-  ( ph  ->  ( ( RR*ss  (
0 [,] +oo )
) tsums  ( k  e. 
{ M }  |->  A ) )  =  { B } )
8584unieqd 4446 . 2  |-  ( ph  ->  U. ( ( RR*ss  ( 0 [,] +oo ) ) tsums  ( k  e.  { M }  |->  A ) )  =  U. { B } )
86 unisng 4452 . . 3  |-  ( B  e.  ( 0 [,] +oo )  ->  U. { B }  =  B
)
8711, 86syl 17 . 2  |-  ( ph  ->  U. { B }  =  B )
882, 85, 873eqtrd 2660 1  |-  ( ph  -> Σ* k  e.  { M } A  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   <.cop 4183   U.cuni 4436   class class class wbr 4653    |-> cmpt 4729    Or wor 5034   ran crn 5115    |` cres 5116   -->wf 5884  (class class class)co 6650   Fincfn 7955   supcsup 8346   0cc0 9936   +oocpnf 10071   RR*cxr 10073    < clt 10074    <_ cle 10075   [,]cicc 12178   ↾s cress 15858    gsumg cgsu 16101   RR*scxrs 16160   Mndcmnd 17294  CMndccmn 18193   tsums ctsu 21929  Σ*cesum 30089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-xadd 11947  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-tset 15960  df-ple 15961  df-ds 15964  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-ordt 16161  df-xrs 16162  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-ntr 20824  df-nei 20902  df-cn 21031  df-haus 21119  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-esum 30090
This theorem is referenced by:  esumsn  30127  esum2dlem  30154
  Copyright terms: Public domain W3C validator