Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemf Structured version   Visualization version   Unicode version

Theorem eulerpartlemf 30432
Description: Lemma for eulerpart 30444: Odd partitions are zero for even numbers. (Contributed by Thierry Arnoux, 9-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
Assertion
Ref Expression
eulerpartlemf  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  -> 
( A `  t
)  =  0 )
Distinct variable groups:    z, t    f, g, k, n, t, A    f, J    f, N    P, g
Allowed substitution hints:    A( x, y, z, r)    D( x, y, z, t, f, g, k, n, r)    P( x, y, z, t, f, k, n, r)    R( x, y, z, t, f, g, k, n, r)    T( x, y, z, t, f, g, k, n, r)    F( x, y, z, t, f, g, k, n, r)    H( x, y, z, t, f, g, k, n, r)    J( x, y, z, t, g, k, n, r)    M( x, y, z, t, f, g, k, n, r)    N( x, y, z, t, g, k, n, r)    O( x, y, z, t, f, g, k, n, r)

Proof of Theorem eulerpartlemf
StepHypRef Expression
1 eldif 3584 . . . . . 6  |-  ( t  e.  ( NN  \  J )  <->  ( t  e.  NN  /\  -.  t  e.  J ) )
2 breq2 4657 . . . . . . . . . . 11  |-  ( z  =  t  ->  (
2  ||  z  <->  2  ||  t ) )
32notbid 308 . . . . . . . . . 10  |-  ( z  =  t  ->  ( -.  2  ||  z  <->  -.  2  ||  t ) )
4 eulerpart.j . . . . . . . . . 10  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
53, 4elrab2 3366 . . . . . . . . 9  |-  ( t  e.  J  <->  ( t  e.  NN  /\  -.  2  ||  t ) )
65simplbi2 655 . . . . . . . 8  |-  ( t  e.  NN  ->  ( -.  2  ||  t  -> 
t  e.  J ) )
76con1d 139 . . . . . . 7  |-  ( t  e.  NN  ->  ( -.  t  e.  J  ->  2  ||  t ) )
87imp 445 . . . . . 6  |-  ( ( t  e.  NN  /\  -.  t  e.  J
)  ->  2  ||  t )
91, 8sylbi 207 . . . . 5  |-  ( t  e.  ( NN  \  J )  ->  2  ||  t )
109adantl 482 . . . 4  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  -> 
2  ||  t )
1110adantr 481 . . 3  |-  ( ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  /\  ( A `
 t )  e.  NN )  ->  2  ||  t )
12 simpll 790 . . . 4  |-  ( ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  /\  ( A `
 t )  e.  NN )  ->  A  e.  ( T  i^i  R
) )
13 eldifi 3732 . . . . . 6  |-  ( t  e.  ( NN  \  J )  ->  t  e.  NN )
14 eulerpart.p . . . . . . . . . . 11  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
15 eulerpart.o . . . . . . . . . . 11  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
16 eulerpart.d . . . . . . . . . . 11  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
17 eulerpart.f . . . . . . . . . . 11  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
18 eulerpart.h . . . . . . . . . . 11  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
19 eulerpart.m . . . . . . . . . . 11  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
20 eulerpart.r . . . . . . . . . . 11  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
21 eulerpart.t . . . . . . . . . . 11  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
2214, 15, 16, 4, 17, 18, 19, 20, 21eulerpartlemt0 30431 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
2322simp1bi 1076 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  ( NN0  ^m  NN ) )
24 elmapi 7879 . . . . . . . . 9  |-  ( A  e.  ( NN0  ^m  NN )  ->  A : NN
--> NN0 )
2523, 24syl 17 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  A : NN
--> NN0 )
26 ffn 6045 . . . . . . . 8  |-  ( A : NN --> NN0  ->  A  Fn  NN )
27 elpreima 6337 . . . . . . . 8  |-  ( A  Fn  NN  ->  (
t  e.  ( `' A " NN )  <-> 
( t  e.  NN  /\  ( A `  t
)  e.  NN ) ) )
2825, 26, 273syl 18 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( t  e.  ( `' A " NN )  <->  ( t  e.  NN  /\  ( A `
 t )  e.  NN ) ) )
2928baibd 948 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  NN )  ->  ( t  e.  ( `' A " NN )  <-> 
( A `  t
)  e.  NN ) )
3013, 29sylan2 491 . . . . 5  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  -> 
( t  e.  ( `' A " NN )  <-> 
( A `  t
)  e.  NN ) )
3130biimpar 502 . . . 4  |-  ( ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  /\  ( A `
 t )  e.  NN )  ->  t  e.  ( `' A " NN ) )
3222simp3bi 1078 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  C_  J )
3332sselda 3603 . . . . 5  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( `' A " NN ) )  ->  t  e.  J
)
345simprbi 480 . . . . 5  |-  ( t  e.  J  ->  -.  2  ||  t )
3533, 34syl 17 . . . 4  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( `' A " NN ) )  ->  -.  2  ||  t )
3612, 31, 35syl2anc 693 . . 3  |-  ( ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  /\  ( A `
 t )  e.  NN )  ->  -.  2  ||  t )
3711, 36pm2.65da 600 . 2  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  ->  -.  ( A `  t
)  e.  NN )
3825adantr 481 . . . 4  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  ->  A : NN --> NN0 )
3913adantl 482 . . . 4  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  -> 
t  e.  NN )
4038, 39ffvelrnd 6360 . . 3  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  -> 
( A `  t
)  e.  NN0 )
41 elnn0 11294 . . 3  |-  ( ( A `  t )  e.  NN0  <->  ( ( A `
 t )  e.  NN  \/  ( A `
 t )  =  0 ) )
4240, 41sylib 208 . 2  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  -> 
( ( A `  t )  e.  NN  \/  ( A `  t
)  =  0 ) )
43 orel1 397 . 2  |-  ( -.  ( A `  t
)  e.  NN  ->  ( ( ( A `  t )  e.  NN  \/  ( A `  t
)  =  0 )  ->  ( A `  t )  =  0 ) )
4437, 42, 43sylc 65 1  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( NN  \  J ) )  -> 
( A `  t
)  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   {crab 2916    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   {copab 4712    |-> cmpt 4729   `'ccnv 5113   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   supp csupp 7295    ^m cmap 7857   Fincfn 7955   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ^cexp 12860   sum_csu 14416    || cdvds 14983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-mulcl 9998  ax-i2m1 10004
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-n0 11293
This theorem is referenced by:  eulerpartlemgh  30440
  Copyright terms: Public domain W3C validator