Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgs2 Structured version   Visualization version   Unicode version

Theorem eulerpartlemgs2 30442
Description: Lemma for eulerpart 30444: The  G function also preserves partition sums. (Contributed by Thierry Arnoux, 10-Sep-2017.)
Hypotheses
Ref Expression
eulerpart.p  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
eulerpart.o  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
eulerpart.d  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
eulerpart.j  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
eulerpart.f  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
eulerpart.h  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
eulerpart.m  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
eulerpart.r  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
eulerpart.t  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
eulerpart.g  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
eulerpart.s  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
Assertion
Ref Expression
eulerpartlemgs2  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  ( G `  A
) )  =  ( S `  A ) )
Distinct variable groups:    f, g,
k, n, o, x, y, z    f, r, A, g, k, n, o, x, y    f, G, k    n, F, o, x, y    o, H, r    f, J, n, o, r, x, y   
n, M, o, r, x, y    f, N, g, k, n, x   
n, O, r, x, y    P, g, k, n    R, f, k, n, o, r, x, y    T, f, k, n, o, r, x, y
Allowed substitution hints:    A( z)    D( x, y, z, f, g, k, n, o, r)    P( x, y, z, f, o, r)    R( z, g)    S( x, y, z, f, g, k, n, o, r)    T( z, g)    F( z, f, g, k, r)    G( x, y, z, g, n, o, r)    H( x, y, z, f, g, k, n)    J( z,
g, k)    M( z,
f, g, k)    N( y, z, o, r)    O( z, f, g, k, o)

Proof of Theorem eulerpartlemgs2
Dummy variables  t  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5485 . . . . . . . 8  |-  ( `' ( G `  A
) " NN ) 
C_  dom  ( G `  A )
2 eulerpart.p . . . . . . . . . . . . . 14  |-  P  =  { f  e.  ( NN0  ^m  NN )  |  ( ( `' f " NN )  e.  Fin  /\  sum_ k  e.  NN  (
( f `  k
)  x.  k )  =  N ) }
3 eulerpart.o . . . . . . . . . . . . . 14  |-  O  =  { g  e.  P  |  A. n  e.  ( `' g " NN )  -.  2  ||  n }
4 eulerpart.d . . . . . . . . . . . . . 14  |-  D  =  { g  e.  P  |  A. n  e.  NN  ( g `  n
)  <_  1 }
5 eulerpart.j . . . . . . . . . . . . . 14  |-  J  =  { z  e.  NN  |  -.  2  ||  z }
6 eulerpart.f . . . . . . . . . . . . . 14  |-  F  =  ( x  e.  J ,  y  e.  NN0  |->  ( ( 2 ^ y )  x.  x
) )
7 eulerpart.h . . . . . . . . . . . . . 14  |-  H  =  { r  e.  ( ( ~P NN0  i^i  Fin )  ^m  J )  |  ( r supp  (/) )  e. 
Fin }
8 eulerpart.m . . . . . . . . . . . . . 14  |-  M  =  ( r  e.  H  |->  { <. x ,  y
>.  |  ( x  e.  J  /\  y  e.  ( r `  x
) ) } )
9 eulerpart.r . . . . . . . . . . . . . 14  |-  R  =  { f  |  ( `' f " NN )  e.  Fin }
10 eulerpart.t . . . . . . . . . . . . . 14  |-  T  =  { f  e.  ( NN0  ^m  NN )  |  ( `' f
" NN )  C_  J }
11 eulerpart.g . . . . . . . . . . . . . 14  |-  G  =  ( o  e.  ( T  i^i  R ) 
|->  ( (𝟭 `  NN ) `  ( F " ( M `  (bits  o.  ( o  |`  J ) ) ) ) ) )
122, 3, 4, 5, 6, 7, 8, 9, 10, 11eulerpartgbij 30434 . . . . . . . . . . . . 13  |-  G :
( T  i^i  R
)
-1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )
13 f1of 6137 . . . . . . . . . . . . 13  |-  ( G : ( T  i^i  R ) -1-1-onto-> ( ( { 0 ,  1 }  ^m  NN )  i^i  R )  ->  G : ( T  i^i  R ) --> ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
1412, 13ax-mp 5 . . . . . . . . . . . 12  |-  G :
( T  i^i  R
) --> ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )
1514ffvelrni 6358 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  ( G `  A )  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i  R ) )
16 elin 3796 . . . . . . . . . . 11  |-  ( ( G `  A )  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )  <->  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  /\  ( G `  A )  e.  R
) )
1715, 16sylib 208 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  /\  ( G `  A )  e.  R
) )
1817simpld 475 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN ) )
19 elmapi 7879 . . . . . . . . 9  |-  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  ->  ( G `
 A ) : NN --> { 0 ,  1 } )
20 fdm 6051 . . . . . . . . 9  |-  ( ( G `  A ) : NN --> { 0 ,  1 }  ->  dom  ( G `  A
)  =  NN )
2118, 19, 203syl 18 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  dom  ( G `
 A )  =  NN )
221, 21syl5sseq 3653 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( `' ( G `  A )
" NN )  C_  NN )
2322sselda 3603 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( `' ( G `  A )
" NN ) )  ->  k  e.  NN )
242, 3, 4, 5, 6, 7, 8, 9, 10, 11eulerpartlemgvv 30438 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  NN )  ->  ( ( G `  A ) `  k
)  =  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 ) )
2524oveq1d 6665 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  NN )  ->  ( ( ( G `
 A ) `  k )  x.  k
)  =  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
2623, 25syldan 487 . . . . 5  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( `' ( G `  A )
" NN ) )  ->  ( ( ( G `  A ) `
 k )  x.  k )  =  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
2726sumeq2dv 14433 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e.  ( `' ( G `
 A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k )  =  sum_ k  e.  ( `' ( G `  A )
" NN ) ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
28 eqeq2 2633 . . . . . . . . . . . . 13  |-  ( m  =  k  ->  (
( ( 2 ^ n )  x.  t
)  =  m  <->  ( (
2 ^ n )  x.  t )  =  k ) )
29282rexbidv 3057 . . . . . . . . . . . 12  |-  ( m  =  k  ->  ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m  <->  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ) )
3029elrab 3363 . . . . . . . . . . 11  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  <->  ( k  e.  NN  /\  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ) )
3130simprbi 480 . . . . . . . . . 10  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k )
3231iftrued 4094 . . . . . . . . 9  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  =  1 )
3332oveq1d 6665 . . . . . . . 8  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  ( 1  x.  k ) )
34 elrabi 3359 . . . . . . . . . 10  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  k  e.  NN )
3534nncnd 11036 . . . . . . . . 9  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  k  e.  CC )
3635mulid2d 10058 . . . . . . . 8  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( 1  x.  k )  =  k )
3733, 36eqtrd 2656 . . . . . . 7  |-  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  k )
3837sumeq2i 14429 . . . . . 6  |-  sum_ k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  sum_ k  e.  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } k
39 id 22 . . . . . . 7  |-  ( k  =  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) )  ->  k  =  ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
402, 3, 4, 5, 6, 7, 8, 9, 10, 11eulerpartlemgf 30441 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( `' ( G `  A )
" NN )  e. 
Fin )
4134adantl 482 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  NN )
4241, 24syldan 487 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( ( G `
 A ) `  k )  =  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 ) )
4331adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k )
4443iftrued 4094 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  =  1 )
4542, 44eqtrd 2656 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( ( G `
 A ) `  k )  =  1 )
46 1nn 11031 . . . . . . . . . . . . 13  |-  1  e.  NN
4745, 46syl6eqel 2709 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( ( G `
 A ) `  k )  e.  NN )
4818, 19syl 17 . . . . . . . . . . . . . 14  |-  ( A  e.  ( T  i^i  R )  ->  ( G `  A ) : NN --> { 0 ,  1 } )
49 ffn 6045 . . . . . . . . . . . . . 14  |-  ( ( G `  A ) : NN --> { 0 ,  1 }  ->  ( G `  A )  Fn  NN )
50 elpreima 6337 . . . . . . . . . . . . . 14  |-  ( ( G `  A )  Fn  NN  ->  (
k  e.  ( `' ( G `  A
) " NN )  <-> 
( k  e.  NN  /\  ( ( G `  A ) `  k
)  e.  NN ) ) )
5148, 49, 503syl 18 . . . . . . . . . . . . 13  |-  ( A  e.  ( T  i^i  R )  ->  ( k  e.  ( `' ( G `
 A ) " NN )  <->  ( k  e.  NN  /\  ( ( G `  A ) `
 k )  e.  NN ) ) )
5251adantr 481 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( k  e.  ( `' ( G `
 A ) " NN )  <->  ( k  e.  NN  /\  ( ( G `  A ) `
 k )  e.  NN ) ) )
5341, 47, 52mpbir2and 957 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  ( `' ( G `  A ) " NN ) )
5453ex 450 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  ( k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ->  k  e.  ( `' ( G `  A ) " NN ) ) )
5554ssrdv 3609 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  C_  ( `' ( G `  A ) " NN ) )
56 ssfi 8180 . . . . . . . . 9  |-  ( ( ( `' ( G `
 A ) " NN )  e.  Fin  /\ 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  C_  ( `' ( G `  A )
" NN ) )  ->  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  e.  Fin )
5740, 55, 56syl2anc 693 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  e.  Fin )
58 cnvexg 7112 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  `' A  e.  _V )
59 imaexg 7103 . . . . . . . . . . 11  |-  ( `' A  e.  _V  ->  ( `' A " NN )  e.  _V )
60 inex1g 4801 . . . . . . . . . . 11  |-  ( ( `' A " NN )  e.  _V  ->  (
( `' A " NN )  i^i  J )  e.  _V )
6158, 59, 603syl 18 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " NN )  i^i  J )  e. 
_V )
62 snex 4908 . . . . . . . . . . . 12  |-  { t }  e.  _V
63 fvex 6201 . . . . . . . . . . . 12  |-  (bits `  ( A `  t ) )  e.  _V
6462, 63xpex 6962 . . . . . . . . . . 11  |-  ( { t }  X.  (bits `  ( A `  t
) ) )  e. 
_V
6564rgenw 2924 . . . . . . . . . 10  |-  A. t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  _V
66 iunexg 7143 . . . . . . . . . 10  |-  ( ( ( ( `' A " NN )  i^i  J
)  e.  _V  /\  A. t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  _V )  ->  U_ t  e.  (
( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  e.  _V )
6761, 65, 66sylancl 694 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  _V )
68 eqid 2622 . . . . . . . . . 10  |-  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  =  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) )
692, 3, 4, 5, 6, 7, 8, 9, 10, 11, 68eulerpartlemgh 30440 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( F  |` 
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) ) :
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) -1-1-onto-> { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
70 f1oeng 7974 . . . . . . . . 9  |-  ( (
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  e.  _V  /\  ( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ) :
U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) -1-1-onto-> { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  ~~  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
7167, 69, 70syl2anc 693 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  ~~  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
72 enfii 8177 . . . . . . . 8  |-  ( ( { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  e.  Fin  /\  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) 
~~  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  e.  Fin )
7357, 71, 72syl2anc 693 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  e.  Fin )
74 fvres 6207 . . . . . . . . 9  |-  ( w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  ->  (
( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ) `  w )  =  ( F `  w ) )
7574adantl 482 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  -> 
( ( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) ) `  w )  =  ( F `  w ) )
76 inss2 3834 . . . . . . . . . . . . . . 15  |-  ( ( `' A " NN )  i^i  J )  C_  J
77 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  ( ( `' A " NN )  i^i  J ) )
7876, 77sseldi 3601 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  J
)
7978snssd 4340 . . . . . . . . . . . . 13  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  { t } 
C_  J )
80 bitsss 15148 . . . . . . . . . . . . 13  |-  (bits `  ( A `  t ) )  C_  NN0
81 xpss12 5225 . . . . . . . . . . . . 13  |-  ( ( { t }  C_  J  /\  (bits `  ( A `  t )
)  C_  NN0 )  -> 
( { t }  X.  (bits `  ( A `  t )
) )  C_  ( J  X.  NN0 ) )
8279, 80, 81sylancl 694 . . . . . . . . . . . 12  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( { t }  X.  (bits `  ( A `  t ) ) )  C_  ( J  X.  NN0 ) )
8382ralrimiva 2966 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  A. t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  C_  ( J  X.  NN0 ) )
84 iunss 4561 . . . . . . . . . . 11  |-  ( U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) 
C_  ( J  X.  NN0 )  <->  A. t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) )  C_  ( J  X.  NN0 ) )
8583, 84sylibr 224 . . . . . . . . . 10  |-  ( A  e.  ( T  i^i  R )  ->  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) )  C_  ( J  X.  NN0 ) )
8685sselda 3603 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  ->  w  e.  ( J  X.  NN0 ) )
875, 6oddpwdcv 30417 . . . . . . . . 9  |-  ( w  e.  ( J  X.  NN0 )  ->  ( F `
 w )  =  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) ) )
8886, 87syl 17 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  -> 
( F `  w
)  =  ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
8975, 88eqtrd 2656 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  w  e.  U_ t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) )  -> 
( ( F  |`  U_ t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) ) `  w )  =  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) ) )
9041nncnd 11036 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  CC )
9139, 73, 69, 89, 90fsumf1o 14454 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e. 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } k  =  sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
9238, 91syl5eq 2668 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e. 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) ) )
93 ax-1cn 9994 . . . . . . . . 9  |-  1  e.  CC
94 0cn 10032 . . . . . . . . 9  |-  0  e.  CC
9593, 94keepel 4155 . . . . . . . 8  |-  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  e.  CC
9695a1i 11 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  e.  CC )
97 ssrab2 3687 . . . . . . . . 9  |-  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  C_  NN
98 simpr 477 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  {
m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
9997, 98sseldi 3601 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  NN )
10099nncnd 11036 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  k  e.  CC )
10196, 100mulcld 10060 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } )  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  e.  CC )
102 simpr 477 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  k  e.  ( ( `' ( G `  A )
" NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } ) )
103102eldifbd 3587 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  -.  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m } )
10422ssdifssd 3748 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) 
C_  NN )
105104sselda 3603 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  k  e.  NN )
10630notbii 310 . . . . . . . . . . 11  |-  ( -.  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  <->  -.  (
k  e.  NN  /\  E. t  e.  NN  E. n  e.  (bits `  ( A `  t )
) ( ( 2 ^ n )  x.  t )  =  k ) )
107 imnan 438 . . . . . . . . . . 11  |-  ( ( k  e.  NN  ->  -. 
E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k )  <->  -.  ( k  e.  NN  /\  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ) )
108106, 107sylbb2 228 . . . . . . . . . 10  |-  ( -.  k  e.  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m }  ->  ( k  e.  NN  ->  -. 
E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ) )
109103, 105, 108sylc 65 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  -.  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k )
110109iffalsed 4097 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  =  0 )
111110oveq1d 6665 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  ( 0  x.  k ) )
112 nnsscn 11025 . . . . . . . . . 10  |-  NN  C_  CC
113104, 112syl6ss 3615 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) 
C_  CC )
114113sselda 3603 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  k  e.  CC )
115114mul02d 10234 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  ( 0  x.  k )  =  0 )
116111, 115eqtrd 2656 . . . . . 6  |-  ( ( A  e.  ( T  i^i  R )  /\  k  e.  ( ( `' ( G `  A ) " NN )  \  { m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  m } ) )  ->  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  0 )
11755, 101, 116, 40fsumss 14456 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e. 
{ m  e.  NN  |  E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  m }  ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k )  =  sum_ k  e.  ( `' ( G `  A ) " NN ) ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n )  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
11892, 117eqtr3d 2658 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  sum_ w  e. 
U_  t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) )  =  sum_ k  e.  ( `' ( G `  A )
" NN ) ( if ( E. t  e.  NN  E. n  e.  (bits `  ( A `  t ) ) ( ( 2 ^ n
)  x.  t )  =  k ,  1 ,  0 )  x.  k ) )
1192, 3, 4, 5, 6, 7, 8, 9, 10eulerpartlemt0 30431 . . . . . . . . . . . . 13  |-  ( A  e.  ( T  i^i  R )  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  e.  Fin  /\  ( `' A " NN )  C_  J ) )
120119simp1bi 1076 . . . . . . . . . . . 12  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  ( NN0  ^m  NN ) )
121 elmapi 7879 . . . . . . . . . . . 12  |-  ( A  e.  ( NN0  ^m  NN )  ->  A : NN
--> NN0 )
122120, 121syl 17 . . . . . . . . . . 11  |-  ( A  e.  ( T  i^i  R )  ->  A : NN
--> NN0 )
123122adantr 481 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  A : NN --> NN0 )
124 cnvimass 5485 . . . . . . . . . . . . 13  |-  ( `' A " NN ) 
C_  dom  A
125 fdm 6051 . . . . . . . . . . . . . 14  |-  ( A : NN --> NN0  ->  dom 
A  =  NN )
126122, 125syl 17 . . . . . . . . . . . . 13  |-  ( A  e.  ( T  i^i  R )  ->  dom  A  =  NN )
127124, 126syl5sseq 3653 . . . . . . . . . . . 12  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  C_  NN )
128127adantr 481 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( `' A " NN )  C_  NN )
129 inss1 3833 . . . . . . . . . . . 12  |-  ( ( `' A " NN )  i^i  J )  C_  ( `' A " NN )
130129, 77sseldi 3601 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  ( `' A " NN ) )
131128, 130sseldd 3604 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  NN )
132123, 131ffvelrnd 6360 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( A `  t )  e.  NN0 )
133 bitsfi 15159 . . . . . . . . 9  |-  ( ( A `  t )  e.  NN0  ->  (bits `  ( A `  t ) )  e.  Fin )
134132, 133syl 17 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  (bits `  ( A `  t )
)  e.  Fin )
135131nncnd 11036 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  t  e.  CC )
136 2cnd 11093 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  2  e.  CC )
137 simprr 796 . . . . . . . . . . 11  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  n  e.  (bits `  ( A `  t
) ) )
13880, 137sseldi 3601 . . . . . . . . . 10  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  n  e.  NN0 )
139136, 138expcld 13008 . . . . . . . . 9  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  ( 2 ^ n )  e.  CC )
140139anassrs 680 . . . . . . . 8  |-  ( ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  /\  n  e.  (bits `  ( A `  t ) ) )  ->  ( 2 ^ n )  e.  CC )
141134, 135, 140fsummulc1 14517 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  = 
sum_ n  e.  (bits `  ( A `  t
) ) ( ( 2 ^ n )  x.  t ) )
142141sumeq2dv 14433 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  = 
sum_ t  e.  ( ( `' A " NN )  i^i  J )
sum_ n  e.  (bits `  ( A `  t
) ) ( ( 2 ^ n )  x.  t ) )
143 bitsinv1 15164 . . . . . . . . 9  |-  ( ( A `  t )  e.  NN0  ->  sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  =  ( A `  t ) )
144143oveq1d 6665 . . . . . . . 8  |-  ( ( A `  t )  e.  NN0  ->  ( sum_ n  e.  (bits `  ( A `  t )
) ( 2 ^ n )  x.  t
)  =  ( ( A `  t )  x.  t ) )
145132, 144syl 17 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  t  e.  ( ( `' A " NN )  i^i  J ) )  ->  ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  =  ( ( A `  t )  x.  t
) )
146145sumeq2dv 14433 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( sum_ n  e.  (bits `  ( A `  t ) ) ( 2 ^ n )  x.  t )  = 
sum_ t  e.  ( ( `' A " NN )  i^i  J ) ( ( A `  t )  x.  t
) )
147 vex 3203 . . . . . . . . . 10  |-  t  e. 
_V
148 vex 3203 . . . . . . . . . 10  |-  n  e. 
_V
149147, 148op2ndd 7179 . . . . . . . . 9  |-  ( w  =  <. t ,  n >.  ->  ( 2nd `  w
)  =  n )
150149oveq2d 6666 . . . . . . . 8  |-  ( w  =  <. t ,  n >.  ->  ( 2 ^ ( 2nd `  w
) )  =  ( 2 ^ n ) )
151147, 148op1std 7178 . . . . . . . 8  |-  ( w  =  <. t ,  n >.  ->  ( 1st `  w
)  =  t )
152150, 151oveq12d 6668 . . . . . . 7  |-  ( w  =  <. t ,  n >.  ->  ( ( 2 ^ ( 2nd `  w
) )  x.  ( 1st `  w ) )  =  ( ( 2 ^ n )  x.  t ) )
153 inss2 3834 . . . . . . . . . 10  |-  ( T  i^i  R )  C_  R
154153sseli 3599 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  R )
155 cnveq 5296 . . . . . . . . . . . 12  |-  ( f  =  A  ->  `' f  =  `' A
)
156155imaeq1d 5465 . . . . . . . . . . 11  |-  ( f  =  A  ->  ( `' f " NN )  =  ( `' A " NN ) )
157156eleq1d 2686 . . . . . . . . . 10  |-  ( f  =  A  ->  (
( `' f " NN )  e.  Fin  <->  ( `' A " NN )  e.  Fin ) )
158157, 9elab2g 3353 . . . . . . . . 9  |-  ( A  e.  ( T  i^i  R )  ->  ( A  e.  R  <->  ( `' A " NN )  e.  Fin ) )
159154, 158mpbid 222 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  e. 
Fin )
160 ssfi 8180 . . . . . . . 8  |-  ( ( ( `' A " NN )  e.  Fin  /\  ( ( `' A " NN )  i^i  J
)  C_  ( `' A " NN ) )  ->  ( ( `' A " NN )  i^i  J )  e. 
Fin )
161159, 129, 160sylancl 694 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " NN )  i^i  J )  e. 
Fin )
162135adantrr 753 . . . . . . . 8  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  t  e.  CC )
163139, 162mulcld 10060 . . . . . . 7  |-  ( ( A  e.  ( T  i^i  R )  /\  ( t  e.  ( ( `' A " NN )  i^i  J )  /\  n  e.  (bits `  ( A `  t
) ) ) )  ->  ( ( 2 ^ n )  x.  t )  e.  CC )
164152, 161, 134, 163fsum2d 14502 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) sum_ n  e.  (bits `  ( A `  t
) ) ( ( 2 ^ n )  x.  t )  = 
sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
165142, 146, 1643eqtr3d 2664 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( ( A `
 t )  x.  t )  =  sum_ w  e.  U_  t  e.  ( ( `' A " NN )  i^i  J
) ( { t }  X.  (bits `  ( A `  t ) ) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) ) )
166 inss1 3833 . . . . . . . . 9  |-  ( T  i^i  R )  C_  T
167166sseli 3599 . . . . . . . 8  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  T )
168156sseq1d 3632 . . . . . . . . . 10  |-  ( f  =  A  ->  (
( `' f " NN )  C_  J  <->  ( `' A " NN )  C_  J ) )
169168, 10elrab2 3366 . . . . . . . . 9  |-  ( A  e.  T  <->  ( A  e.  ( NN0  ^m  NN )  /\  ( `' A " NN )  C_  J
) )
170169simprbi 480 . . . . . . . 8  |-  ( A  e.  T  ->  ( `' A " NN ) 
C_  J )
171167, 170syl 17 . . . . . . 7  |-  ( A  e.  ( T  i^i  R )  ->  ( `' A " NN )  C_  J )
172 df-ss 3588 . . . . . . 7  |-  ( ( `' A " NN ) 
C_  J  <->  ( ( `' A " NN )  i^i  J )  =  ( `' A " NN ) )
173171, 172sylib 208 . . . . . 6  |-  ( A  e.  ( T  i^i  R )  ->  ( ( `' A " NN )  i^i  J )  =  ( `' A " NN ) )
174173sumeq1d 14431 . . . . 5  |-  ( A  e.  ( T  i^i  R )  ->  sum_ t  e.  ( ( `' A " NN )  i^i  J
) ( ( A `
 t )  x.  t )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t ) )
175165, 174eqtr3d 2658 . . . 4  |-  ( A  e.  ( T  i^i  R )  ->  sum_ w  e. 
U_  t  e.  ( ( `' A " NN )  i^i  J ) ( { t }  X.  (bits `  ( A `  t )
) ) ( ( 2 ^ ( 2nd `  w ) )  x.  ( 1st `  w
) )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t ) )
17627, 118, 1753eqtr2d 2662 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e.  ( `' ( G `
 A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t ) )
177 fveq2 6191 . . . . 5  |-  ( k  =  t  ->  ( A `  k )  =  ( A `  t ) )
178 id 22 . . . . 5  |-  ( k  =  t  ->  k  =  t )
179177, 178oveq12d 6668 . . . 4  |-  ( k  =  t  ->  (
( A `  k
)  x.  k )  =  ( ( A `
 t )  x.  t ) )
180179cbvsumv 14426 . . 3  |-  sum_ k  e.  ( `' A " NN ) ( ( A `
 k )  x.  k )  =  sum_ t  e.  ( `' A " NN ) ( ( A `  t
)  x.  t )
181176, 180syl6eqr 2674 . 2  |-  ( A  e.  ( T  i^i  R )  ->  sum_ k  e.  ( `' ( G `
 A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k ) )
182 0nn0 11307 . . . . . . . 8  |-  0  e.  NN0
183 1nn0 11308 . . . . . . . 8  |-  1  e.  NN0
184 prssi 4353 . . . . . . . 8  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  C_  NN0 )
185182, 183, 184mp2an 708 . . . . . . 7  |-  { 0 ,  1 }  C_  NN0
186 fss 6056 . . . . . . 7  |-  ( ( ( G `  A
) : NN --> { 0 ,  1 }  /\  { 0 ,  1 } 
C_  NN0 )  ->  ( G `  A ) : NN --> NN0 )
187185, 186mpan2 707 . . . . . 6  |-  ( ( G `  A ) : NN --> { 0 ,  1 }  ->  ( G `  A ) : NN --> NN0 )
188 nn0ex 11298 . . . . . . . 8  |-  NN0  e.  _V
189 nnex 11026 . . . . . . . 8  |-  NN  e.  _V
190188, 189elmap 7886 . . . . . . 7  |-  ( ( G `  A )  e.  ( NN0  ^m  NN )  <->  ( G `  A ) : NN --> NN0 )
191190biimpri 218 . . . . . 6  |-  ( ( G `  A ) : NN --> NN0  ->  ( G `  A )  e.  ( NN0  ^m  NN ) )
19219, 187, 1913syl 18 . . . . 5  |-  ( ( G `  A )  e.  ( { 0 ,  1 }  ^m  NN )  ->  ( G `
 A )  e.  ( NN0  ^m  NN ) )
193192anim1i 592 . . . 4  |-  ( ( ( G `  A
)  e.  ( { 0 ,  1 }  ^m  NN )  /\  ( G `  A )  e.  R )  -> 
( ( G `  A )  e.  ( NN0  ^m  NN )  /\  ( G `  A )  e.  R
) )
194 elin 3796 . . . 4  |-  ( ( G `  A )  e.  ( ( NN0 
^m  NN )  i^i 
R )  <->  ( ( G `  A )  e.  ( NN0  ^m  NN )  /\  ( G `  A )  e.  R
) )
195193, 16, 1943imtr4i 281 . . 3  |-  ( ( G `  A )  e.  ( ( { 0 ,  1 }  ^m  NN )  i^i 
R )  ->  ( G `  A )  e.  ( ( NN0  ^m  NN )  i^i  R ) )
196 eulerpart.s . . . 4  |-  S  =  ( f  e.  ( ( NN0  ^m  NN )  i^i  R )  |->  sum_ k  e.  NN  (
( f `  k
)  x.  k ) )
1979, 196eulerpartlemsv2 30420 . . 3  |-  ( ( G `  A )  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  ( G `  A ) )  = 
sum_ k  e.  ( `' ( G `  A ) " NN ) ( ( ( G `  A ) `
 k )  x.  k ) )
19815, 195, 1973syl 18 . 2  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  ( G `  A
) )  =  sum_ k  e.  ( `' ( G `  A )
" NN ) ( ( ( G `  A ) `  k
)  x.  k ) )
199120, 154elind 3798 . . 3  |-  ( A  e.  ( T  i^i  R )  ->  A  e.  ( ( NN0  ^m  NN )  i^i  R ) )
2009, 196eulerpartlemsv2 30420 . . 3  |-  ( A  e.  ( ( NN0 
^m  NN )  i^i 
R )  ->  ( S `  A )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k )  x.  k
) )
201199, 200syl 17 . 2  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  A )  =  sum_ k  e.  ( `' A " NN ) ( ( A `  k
)  x.  k ) )
202181, 198, 2013eqtr4d 2666 1  |-  ( A  e.  ( T  i^i  R )  ->  ( S `  ( G `  A
) )  =  ( S `  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   <.cop 4183   U_ciun 4520   class class class wbr 4653   {copab 4712    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   dom cdm 5114    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   supp csupp 7295    ^m cmap 7857    ~~ cen 7952   Fincfn 7955   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941    <_ cle 10075   NNcn 11020   2c2 11070   NN0cn0 11292   ^cexp 12860   sum_csu 14416    || cdvds 14983  bitscbits 15141  𝟭cind 30072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-dvds 14984  df-bits 15144  df-ind 30073
This theorem is referenced by:  eulerpartlemn  30443
  Copyright terms: Public domain W3C validator