| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oiso2 | Structured version Visualization version Unicode version | ||
| Description: Any one-to-one onto
function determines an isomorphism with an induced
relation |
| Ref | Expression |
|---|---|
| f1oiso2.1 |
|
| Ref | Expression |
|---|---|
| f1oiso2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oiso2.1 |
. . 3
| |
| 2 | f1ocnvdm 6540 |
. . . . . . . . 9
| |
| 3 | 2 | adantrr 753 |
. . . . . . . 8
|
| 4 | 3 | 3adant3 1081 |
. . . . . . 7
|
| 5 | f1ocnvdm 6540 |
. . . . . . . . . 10
| |
| 6 | 5 | adantrl 752 |
. . . . . . . . 9
|
| 7 | 6 | 3adant3 1081 |
. . . . . . . 8
|
| 8 | f1ocnvfv2 6533 |
. . . . . . . . . . 11
| |
| 9 | 8 | eqcomd 2628 |
. . . . . . . . . 10
|
| 10 | f1ocnvfv2 6533 |
. . . . . . . . . . 11
| |
| 11 | 10 | eqcomd 2628 |
. . . . . . . . . 10
|
| 12 | 9, 11 | anim12dan 882 |
. . . . . . . . 9
|
| 13 | 12 | 3adant3 1081 |
. . . . . . . 8
|
| 14 | simp3 1063 |
. . . . . . . 8
| |
| 15 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 16 | 15 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 17 | 16 | anbi2d 740 |
. . . . . . . . . 10
|
| 18 | breq2 4657 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | anbi12d 747 |
. . . . . . . . 9
|
| 20 | 19 | rspcev 3309 |
. . . . . . . 8
|
| 21 | 7, 13, 14, 20 | syl12anc 1324 |
. . . . . . 7
|
| 22 | fveq2 6191 |
. . . . . . . . . . . 12
| |
| 23 | 22 | eqeq2d 2632 |
. . . . . . . . . . 11
|
| 24 | 23 | anbi1d 741 |
. . . . . . . . . 10
|
| 25 | breq1 4656 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | anbi12d 747 |
. . . . . . . . 9
|
| 27 | 26 | rexbidv 3052 |
. . . . . . . 8
|
| 28 | 27 | rspcev 3309 |
. . . . . . 7
|
| 29 | 4, 21, 28 | syl2anc 693 |
. . . . . 6
|
| 30 | 29 | 3expib 1268 |
. . . . 5
|
| 31 | simp3ll 1132 |
. . . . . . . . 9
| |
| 32 | simp1 1061 |
. . . . . . . . . 10
| |
| 33 | simp2l 1087 |
. . . . . . . . . 10
| |
| 34 | f1of 6137 |
. . . . . . . . . . 11
| |
| 35 | 34 | ffvelrnda 6359 |
. . . . . . . . . 10
|
| 36 | 32, 33, 35 | syl2anc 693 |
. . . . . . . . 9
|
| 37 | 31, 36 | eqeltrd 2701 |
. . . . . . . 8
|
| 38 | simp3lr 1133 |
. . . . . . . . 9
| |
| 39 | simp2r 1088 |
. . . . . . . . . 10
| |
| 40 | 34 | ffvelrnda 6359 |
. . . . . . . . . 10
|
| 41 | 32, 39, 40 | syl2anc 693 |
. . . . . . . . 9
|
| 42 | 38, 41 | eqeltrd 2701 |
. . . . . . . 8
|
| 43 | simp3r 1090 |
. . . . . . . . 9
| |
| 44 | 31 | eqcomd 2628 |
. . . . . . . . . 10
|
| 45 | f1ocnvfv 6534 |
. . . . . . . . . . 11
| |
| 46 | 32, 33, 45 | syl2anc 693 |
. . . . . . . . . 10
|
| 47 | 44, 46 | mpd 15 |
. . . . . . . . 9
|
| 48 | 38 | eqcomd 2628 |
. . . . . . . . . 10
|
| 49 | f1ocnvfv 6534 |
. . . . . . . . . . 11
| |
| 50 | 32, 39, 49 | syl2anc 693 |
. . . . . . . . . 10
|
| 51 | 48, 50 | mpd 15 |
. . . . . . . . 9
|
| 52 | 43, 47, 51 | 3brtr4d 4685 |
. . . . . . . 8
|
| 53 | 37, 42, 52 | jca31 557 |
. . . . . . 7
|
| 54 | 53 | 3exp 1264 |
. . . . . 6
|
| 55 | 54 | rexlimdvv 3037 |
. . . . 5
|
| 56 | 30, 55 | impbid 202 |
. . . 4
|
| 57 | 56 | opabbidv 4716 |
. . 3
|
| 58 | 1, 57 | syl5eq 2668 |
. 2
|
| 59 | f1oiso 6601 |
. 2
| |
| 60 | 58, 59 | mpdan 702 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 |
| This theorem is referenced by: fnwelem 7292 |
| Copyright terms: Public domain | W3C validator |