Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem15 Structured version   Visualization version   Unicode version

Theorem poimirlem15 33424
Description: Lemma for poimir 33442, that the face in poimirlem22 33431 is a face. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0  |-  ( ph  ->  N  e.  NN )
poimirlem22.s  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
poimirlem22.1  |-  ( ph  ->  F : ( 0 ... ( N  - 
1 ) ) --> ( ( 0 ... K
)  ^m  ( 1 ... N ) ) )
poimirlem22.2  |-  ( ph  ->  T  e.  S )
poimirlem15.3  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )
Assertion
Ref Expression
poimirlem15  |-  ( ph  -> 
<. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  e.  S
)
Distinct variable groups:    f, j,
t, y    ph, j, y   
j, F, y    j, N, y    T, j, y    ph, t    f, K, j, t    f, N, t    T, f    f, F, t   
t, T    S, j,
t, y
Allowed substitution hints:    ph( f)    S( f)    K( y)

Proof of Theorem poimirlem15
StepHypRef Expression
1 poimirlem22.2 . . . . . 6  |-  ( ph  ->  T  e.  S )
2 elrabi 3359 . . . . . . 7  |-  ( T  e.  { t  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  |  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }  ->  T  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
3 poimirlem22.s . . . . . . 7  |-  S  =  { t  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  |  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) }
42, 3eleq2s 2719 . . . . . 6  |-  ( T  e.  S  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) ) )
51, 4syl 17 . . . . 5  |-  ( ph  ->  T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
6 xp1st 7198 . . . . 5  |-  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N ) )  X. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  ->  ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
7 xp1st 7198 . . . . 5  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
85, 6, 73syl 18 . . . 4  |-  ( ph  ->  ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) ) )
9 xp2nd 7199 . . . . . . . 8  |-  ( ( 1st `  T )  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  -> 
( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
105, 6, 93syl 18 . . . . . . 7  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
11 fvex 6201 . . . . . . . 8  |-  ( 2nd `  ( 1st `  T
) )  e.  _V
12 f1oeq1 6127 . . . . . . . 8  |-  ( f  =  ( 2nd `  ( 1st `  T ) )  ->  ( f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
)  <->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
1311, 12elab 3350 . . . . . . 7  |-  ( ( 2nd `  ( 1st `  T ) )  e. 
{ f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) }  <->  ( 2nd `  ( 1st `  T
) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) )
1410, 13sylib 208 . . . . . 6  |-  ( ph  ->  ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
15 poimirlem15.3 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 1 ... ( N  - 
1 ) ) )
16 elfznn 12370 . . . . . . . . . . . . 13  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  e.  NN )
1715, 16syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd `  T
)  e.  NN )
1817nnred 11035 . . . . . . . . . . 11  |-  ( ph  ->  ( 2nd `  T
)  e.  RR )
1918ltp1d 10954 . . . . . . . . . . 11  |-  ( ph  ->  ( 2nd `  T
)  <  ( ( 2nd `  T )  +  1 ) )
2018, 19ltned 10173 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  T
)  =/=  ( ( 2nd `  T )  +  1 ) )
2120necomd 2849 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  =/=  ( 2nd `  T
) )
22 fvex 6201 . . . . . . . . . . 11  |-  ( 2nd `  T )  e.  _V
23 ovex 6678 . . . . . . . . . . 11  |-  ( ( 2nd `  T )  +  1 )  e. 
_V
24 f1oprg 6181 . . . . . . . . . . 11  |-  ( ( ( ( 2nd `  T
)  e.  _V  /\  ( ( 2nd `  T
)  +  1 )  e.  _V )  /\  ( ( ( 2nd `  T )  +  1 )  e.  _V  /\  ( 2nd `  T )  e.  _V ) )  ->  ( ( ( 2nd `  T )  =/=  ( ( 2nd `  T )  +  1 )  /\  ( ( 2nd `  T )  +  1 )  =/=  ( 2nd `  T
) )  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) } ) )
2522, 23, 23, 22, 24mp4an 709 . . . . . . . . . 10  |-  ( ( ( 2nd `  T
)  =/=  ( ( 2nd `  T )  +  1 )  /\  ( ( 2nd `  T
)  +  1 )  =/=  ( 2nd `  T
) )  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) } )
2620, 21, 25syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) } )
27 prcom 4267 . . . . . . . . . 10  |-  { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) }  =  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }
28 f1oeq3 6129 . . . . . . . . . 10  |-  ( { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) }  =  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  ->  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) }  <->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
2927, 28ax-mp 5 . . . . . . . . 9  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) }  <->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
3026, 29sylib 208 . . . . . . . 8  |-  ( ph  ->  { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
31 f1oi 6174 . . . . . . . 8  |-  (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) : ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) -1-1-onto-> ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
32 disjdif 4040 . . . . . . . . 9  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  (/)
33 f1oun 6156 . . . . . . . . 9  |-  ( ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  /\  (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) : ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) -1-1-onto-> ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  /\  (
( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  i^i  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )  =  (/)  /\  ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  i^i  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )  =  (/) ) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  u.  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) -1-1-onto-> ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
3432, 32, 33mpanr12 721 . . . . . . . 8  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  /\  (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) : ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) -1-1-onto-> ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  u.  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) -1-1-onto-> ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
3530, 31, 34sylancl 694 . . . . . . 7  |-  ( ph  ->  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) -1-1-onto-> ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
36 poimir.0 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  NN )
3736nncnd 11036 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  CC )
38 npcan1 10455 . . . . . . . . . . . . . 14  |-  ( N  e.  CC  ->  (
( N  -  1 )  +  1 )  =  N )
3937, 38syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  =  N )
4036nnzd 11481 . . . . . . . . . . . . . . 15  |-  ( ph  ->  N  e.  ZZ )
41 peano2zm 11420 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
4240, 41syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( N  -  1 )  e.  ZZ )
43 uzid 11702 . . . . . . . . . . . . . 14  |-  ( ( N  -  1 )  e.  ZZ  ->  ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
44 peano2uz 11741 . . . . . . . . . . . . . 14  |-  ( ( N  -  1 )  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1 ) ) )
4542, 43, 443syl 18 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( N  - 
1 )  +  1 )  e.  ( ZZ>= `  ( N  -  1
) ) )
4639, 45eqeltrrd 2702 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  ( ZZ>= `  ( N  -  1
) ) )
47 fzss2 12381 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  ( N  -  1 ) )  ->  ( 1 ... ( N  - 
1 ) )  C_  ( 1 ... N
) )
4846, 47syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  ( 1 ... N ) )
4948, 15sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 1 ... N ) )
5017peano2nnd 11037 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  e.  NN )
5142zred 11482 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  e.  RR )
5236nnred 11035 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  RR )
53 elfzle2 12345 . . . . . . . . . . . . . 14  |-  ( ( 2nd `  T )  e.  ( 1 ... ( N  -  1 ) )  ->  ( 2nd `  T )  <_ 
( N  -  1 ) )
5415, 53syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd `  T
)  <_  ( N  -  1 ) )
5552ltm1d 10956 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  -  1 )  <  N )
5618, 51, 52, 54, 55lelttrd 10195 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd `  T
)  <  N )
5717nnzd 11481 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2nd `  T
)  e.  ZZ )
58 zltp1le 11427 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  T
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 2nd `  T
)  <  N  <->  ( ( 2nd `  T )  +  1 )  <_  N
) )
5957, 40, 58syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 2nd `  T
)  <  N  <->  ( ( 2nd `  T )  +  1 )  <_  N
) )
6056, 59mpbid 222 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  <_  N )
61 fznn 12408 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  (
( ( 2nd `  T
)  +  1 )  e.  ( 1 ... N )  <->  ( (
( 2nd `  T
)  +  1 )  e.  NN  /\  (
( 2nd `  T
)  +  1 )  <_  N ) ) )
6240, 61syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 2nd `  T )  +  1 )  e.  ( 1 ... N )  <->  ( (
( 2nd `  T
)  +  1 )  e.  NN  /\  (
( 2nd `  T
)  +  1 )  <_  N ) ) )
6350, 60, 62mpbir2and 957 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  e.  ( 1 ... N ) )
64 prssi 4353 . . . . . . . . . 10  |-  ( ( ( 2nd `  T
)  e.  ( 1 ... N )  /\  ( ( 2nd `  T
)  +  1 )  e.  ( 1 ... N ) )  ->  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( 1 ... N ) )
6549, 63, 64syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( 1 ... N ) )
66 undif 4049 . . . . . . . . 9  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( 1 ... N )  <->  ( {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( 1 ... N ) )
6765, 66sylib 208 . . . . . . . 8  |-  ( ph  ->  ( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )  =  ( 1 ... N
) )
68 f1oeq23 6130 . . . . . . . 8  |-  ( ( ( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )  =  ( 1 ... N
)  /\  ( {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( 1 ... N ) )  ->  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  u.  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) -1-1-onto-> ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  <->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
6967, 67, 68syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) : ( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) -1-1-onto-> ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  <->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) ) )
7035, 69mpbid 222 . . . . . 6  |-  ( ph  ->  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) )
71 f1oco 6159 . . . . . 6  |-  ( ( ( 2nd `  ( 1st `  T ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  /\  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )  ->  (
( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
7214, 70, 71syl2anc 693 . . . . 5  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
73 prex 4909 . . . . . . . 8  |-  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  e.  _V
74 ovex 6678 . . . . . . . . 9  |-  ( 1 ... N )  e. 
_V
75 difexg 4808 . . . . . . . . 9  |-  ( ( 1 ... N )  e.  _V  ->  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  e.  _V )
76 resiexg 7102 . . . . . . . . 9  |-  ( ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  e.  _V  ->  (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )  e. 
_V )
7774, 75, 76mp2b 10 . . . . . . . 8  |-  (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  e.  _V
7873, 77unex 6956 . . . . . . 7  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )  e.  _V
7911, 78coex 7118 . . . . . 6  |-  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  e.  _V
80 f1oeq1 6127 . . . . . 6  |-  ( f  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) )  ->  ( f : ( 1 ... N ) -1-1-onto-> ( 1 ... N
)  <->  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) ) )
8179, 80elab 3350 . . . . 5  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) }  <-> 
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) : ( 1 ... N ) -1-1-onto-> ( 1 ... N
) )
8272, 81sylibr 224 . . . 4  |-  ( ph  ->  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )
83 opelxpi 5148 . . . 4  |-  ( ( ( 1st `  ( 1st `  T ) )  e.  ( ( 0..^ K )  ^m  (
1 ... N ) )  /\  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) )  e.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  ->  <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>.  e.  ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } ) )
848, 82, 83syl2anc 693 . . 3  |-  ( ph  -> 
<. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >.  e.  (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } ) )
85 1eluzge0 11732 . . . . . 6  |-  1  e.  ( ZZ>= `  0 )
86 fzss1 12380 . . . . . 6  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
8785, 86ax-mp 5 . . . . 5  |-  ( 1 ... N )  C_  ( 0 ... N
)
8848, 87syl6ss 3615 . . . 4  |-  ( ph  ->  ( 1 ... ( N  -  1 ) )  C_  ( 0 ... N ) )
8988, 15sseldd 3604 . . 3  |-  ( ph  ->  ( 2nd `  T
)  e.  ( 0 ... N ) )
90 opelxpi 5148 . . 3  |-  ( (
<. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >.  e.  (
( ( 0..^ K )  ^m  ( 1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  /\  ( 2nd `  T )  e.  ( 0 ... N ) )  ->  <. <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>. ,  ( 2nd `  T ) >.  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
9184, 89, 90syl2anc 693 . 2  |-  ( ph  -> 
<. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) ) )
92 fveq2 6191 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
9392breq2d 4665 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
y  <  ( 2nd `  t )  <->  y  <  ( 2nd `  T ) ) )
9493ifbid 4108 . . . . . . . . . 10  |-  ( t  =  T  ->  if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
9594csbeq1d 3540 . . . . . . . . 9  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
96 fveq2 6191 . . . . . . . . . . . 12  |-  ( t  =  T  ->  ( 1st `  t )  =  ( 1st `  T
) )
9796fveq2d 6195 . . . . . . . . . . 11  |-  ( t  =  T  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
9896fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( t  =  T  ->  ( 2nd `  ( 1st `  t
) )  =  ( 2nd `  ( 1st `  T ) ) )
9998imaeq1d 5465 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) ) )
10099xpeq1d 5138 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... j
) )  X.  {
1 } ) )
10198imaeq1d 5465 . . . . . . . . . . . . 13  |-  ( t  =  T  ->  (
( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) ) )
102101xpeq1d 5138 . . . . . . . . . . . 12  |-  ( t  =  T  ->  (
( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )
103100, 102uneq12d 3768 . . . . . . . . . . 11  |-  ( t  =  T  ->  (
( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )
10497, 103oveq12d 6668 . . . . . . . . . 10  |-  ( t  =  T  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
105104csbeq2dv 3992 . . . . . . . . 9  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
10695, 105eqtrd 2656 . . . . . . . 8  |-  ( t  =  T  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
107106mpteq2dv 4745 . . . . . . 7  |-  ( t  =  T  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
108107eqeq2d 2632 . . . . . 6  |-  ( t  =  T  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
109108, 3elrab2 3366 . . . . 5  |-  ( T  e.  S  <->  ( T  e.  ( ( ( ( 0..^ K )  ^m  ( 1 ... N
) )  X.  {
f  |  f : ( 1 ... N
)
-1-1-onto-> ( 1 ... N
) } )  X.  ( 0 ... N
) )  /\  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
110109simprbi 480 . . . 4  |-  ( T  e.  S  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
1111, 110syl 17 . . 3  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
112 imaco 5640 . . . . . . . . . 10  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( 1 ... y ) ) )
113 f1ofn 6138 . . . . . . . . . . . . . . . 16  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) }  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  Fn  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
11426, 113syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  Fn  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
115114ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  Fn  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
116 incom 3805 . . . . . . . . . . . . . . 15  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( 1 ... y ) )  =  ( ( 1 ... y )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
117 elfznn0 12433 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  NN0 )
118117nn0red 11352 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  RR )
119 ltnle 10117 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  RR  /\  ( 2nd `  T )  e.  RR )  -> 
( y  <  ( 2nd `  T )  <->  -.  ( 2nd `  T )  <_ 
y ) )
120118, 18, 119syl2anr 495 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  <  ( 2nd `  T )  <->  -.  ( 2nd `  T )  <_ 
y ) )
121120biimpa 501 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  -.  ( 2nd `  T )  <_  y )
122 elfzle2 12345 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 2nd `  T )  e.  ( 1 ... y )  ->  ( 2nd `  T )  <_ 
y )
123121, 122nsyl 135 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  -.  ( 2nd `  T )  e.  ( 1 ... y ) )
124 disjsn 4246 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1 ... y
)  i^i  { ( 2nd `  T ) } )  =  (/)  <->  -.  ( 2nd `  T )  e.  ( 1 ... y
) )
125123, 124sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 1 ... y
)  i^i  { ( 2nd `  T ) } )  =  (/) )
126118ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  y  e.  RR )
12718ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( 2nd `  T )  e.  RR )
12850nnred 11035 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  e.  RR )
129128ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 2nd `  T
)  +  1 )  e.  RR )
130 simpr 477 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  y  <  ( 2nd `  T
) )
13119ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( 2nd `  T )  < 
( ( 2nd `  T
)  +  1 ) )
132126, 127, 129, 130, 131lttrd 10198 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  y  <  ( ( 2nd `  T
)  +  1 ) )
133 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  RR  /\  ( ( 2nd `  T
)  +  1 )  e.  RR )  -> 
( y  <  (
( 2nd `  T
)  +  1 )  <->  -.  ( ( 2nd `  T
)  +  1 )  <_  y ) )
134118, 128, 133syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  <  ( ( 2nd `  T )  +  1 )  <->  -.  (
( 2nd `  T
)  +  1 )  <_  y ) )
135134adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
y  <  ( ( 2nd `  T )  +  1 )  <->  -.  (
( 2nd `  T
)  +  1 )  <_  y ) )
136132, 135mpbid 222 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  -.  ( ( 2nd `  T
)  +  1 )  <_  y )
137 elfzle2 12345 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  T
)  +  1 )  e.  ( 1 ... y )  ->  (
( 2nd `  T
)  +  1 )  <_  y )
138136, 137nsyl 135 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  -.  ( ( 2nd `  T
)  +  1 )  e.  ( 1 ... y ) )
139 disjsn 4246 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1 ... y
)  i^i  { (
( 2nd `  T
)  +  1 ) } )  =  (/)  <->  -.  ( ( 2nd `  T
)  +  1 )  e.  ( 1 ... y ) )
140138, 139sylibr 224 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 1 ... y
)  i^i  { (
( 2nd `  T
)  +  1 ) } )  =  (/) )
141125, 140uneq12d 3768 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( 1 ... y )  i^i  {
( 2nd `  T
) } )  u.  ( ( 1 ... y )  i^i  {
( ( 2nd `  T
)  +  1 ) } ) )  =  ( (/)  u.  (/) ) )
142 df-pr 4180 . . . . . . . . . . . . . . . . . 18  |-  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  =  ( { ( 2nd `  T
) }  u.  {
( ( 2nd `  T
)  +  1 ) } )
143142ineq2i 3811 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... y )  i^i  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  =  ( ( 1 ... y
)  i^i  ( {
( 2nd `  T
) }  u.  {
( ( 2nd `  T
)  +  1 ) } ) )
144 indi 3873 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... y )  i^i  ( { ( 2nd `  T ) }  u.  { ( ( 2nd `  T
)  +  1 ) } ) )  =  ( ( ( 1 ... y )  i^i 
{ ( 2nd `  T
) } )  u.  ( ( 1 ... y )  i^i  {
( ( 2nd `  T
)  +  1 ) } ) )
145143, 144eqtr2i 2645 . . . . . . . . . . . . . . . 16  |-  ( ( ( 1 ... y
)  i^i  { ( 2nd `  T ) } )  u.  ( ( 1 ... y )  i^i  { ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( 1 ... y
)  i^i  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )
146 un0 3967 . . . . . . . . . . . . . . . 16  |-  ( (/)  u.  (/) )  =  (/)
147141, 145, 1463eqtr3g 2679 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 1 ... y
)  i^i  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  =  (/) )
148116, 147syl5eq 2668 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( 1 ... y ) )  =  (/) )
149 fnimadisj 6012 . . . . . . . . . . . . . 14  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  Fn  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  /\  ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  i^i  (
1 ... y ) )  =  (/) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... y
) )  =  (/) )
150115, 148, 149syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... y
) )  =  (/) )
15139adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  =  N )
152 elfzuz3 12339 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  ( N  -  1 )  e.  ( ZZ>= `  y
) )
153 peano2uz 11741 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  y )
)
154152, 153syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
155154adantl 482 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  y
) )
156151, 155eqeltrrd 2702 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  y )
)
157 fzss2 12381 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  ( ZZ>= `  y
)  ->  ( 1 ... y )  C_  ( 1 ... N
) )
158 reldisj 4020 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... y ) 
C_  ( 1 ... N )  ->  (
( ( 1 ... y )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)  <->  ( 1 ... y )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
159156, 157, 1583syl 18 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 1 ... y )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)  <->  ( 1 ... y )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
160159adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( 1 ... y )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)  <->  ( 1 ... y )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
161147, 160mpbid 222 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
1 ... y )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
162 resiima 5480 . . . . . . . . . . . . . 14  |-  ( ( 1 ... y ) 
C_  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  ->  ( (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
1 ... y ) )  =  ( 1 ... y ) )
163161, 162syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( 1 ... y
) )  =  ( 1 ... y ) )
164150, 163uneq12d 3768 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } " (
1 ... y ) )  u.  ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
1 ... y ) ) )  =  ( (/)  u.  ( 1 ... y
) ) )
165 imaundir 5546 . . . . . . . . . . . 12  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( 1 ... y ) )  =  ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } " (
1 ... y ) )  u.  ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
1 ... y ) ) )
166 uncom 3757 . . . . . . . . . . . . 13  |-  ( (/)  u.  ( 1 ... y
) )  =  ( ( 1 ... y
)  u.  (/) )
167 un0 3967 . . . . . . . . . . . . 13  |-  ( ( 1 ... y )  u.  (/) )  =  ( 1 ... y )
168166, 167eqtr2i 2645 . . . . . . . . . . . 12  |-  ( 1 ... y )  =  ( (/)  u.  (
1 ... y ) )
169164, 165, 1683eqtr4g 2681 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) "
( 1 ... y
) )  =  ( 1 ... y ) )
170169imaeq2d 5466 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( 1 ... y ) ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) ) )
171112, 170syl5eq 2668 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) ) )
172171xpeq1d 5138 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } ) )
173 imaco 5640 . . . . . . . . . 10  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( ( y  +  1 ) ... N ) ) )
174 imaundir 5546 . . . . . . . . . . . . 13  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( ( y  +  1 ) ... N ) )  =  ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } " (
( y  +  1 ) ... N ) )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( y  +  1 ) ... N ) ) )
175 imassrn 5477 . . . . . . . . . . . . . . . . 17  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( y  +  1 ) ... N
) )  C_  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }
176175a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( y  +  1 ) ... N
) )  C_  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
177 fnima 6010 . . . . . . . . . . . . . . . . . . 19  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  Fn  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  ->  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } " {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  ran  { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
17826, 113, 1773syl 18 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } " {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  ran  { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
179178ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  ran  { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
180 elfzelz 12342 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  e.  ZZ )
181 zltp1le 11427 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( y  e.  ZZ  /\  ( 2nd `  T )  e.  ZZ )  -> 
( y  <  ( 2nd `  T )  <->  ( y  +  1 )  <_ 
( 2nd `  T
) ) )
182180, 57, 181syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  <  ( 2nd `  T )  <->  ( y  +  1 )  <_ 
( 2nd `  T
) ) )
183182biimpa 501 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
y  +  1 )  <_  ( 2nd `  T
) )
18418, 52, 56ltled 10185 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( 2nd `  T
)  <_  N )
185184ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( 2nd `  T )  <_  N )
18657adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  ( 2nd `  T )  e.  ZZ )
187 nn0p1nn 11332 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  NN0  ->  ( y  +  1 )  e.  NN )
188117, 187syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  NN )
189188nnzd 11481 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ZZ )
190189adantl 482 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  +  1 )  e.  ZZ )
19140adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ZZ )
192 elfz 12332 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 2nd `  T
)  e.  ZZ  /\  ( y  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 2nd `  T
)  e.  ( ( y  +  1 ) ... N )  <->  ( (
y  +  1 )  <_  ( 2nd `  T
)  /\  ( 2nd `  T )  <_  N
) ) )
193186, 190, 191, 192syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  e.  ( ( y  +  1 ) ... N )  <->  ( (
y  +  1 )  <_  ( 2nd `  T
)  /\  ( 2nd `  T )  <_  N
) ) )
194193adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 2nd `  T
)  e.  ( ( y  +  1 ) ... N )  <->  ( (
y  +  1 )  <_  ( 2nd `  T
)  /\  ( 2nd `  T )  <_  N
) ) )
195183, 185, 194mpbir2and 957 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( 2nd `  T )  e.  ( ( y  +  1 ) ... N
) )
196 1red 10055 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  1  e.  RR )
197 ltle 10126 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  RR  /\  ( 2nd `  T )  e.  RR )  -> 
( y  <  ( 2nd `  T )  -> 
y  <_  ( 2nd `  T ) ) )
198118, 18, 197syl2anr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
y  <  ( 2nd `  T )  ->  y  <_  ( 2nd `  T
) ) )
199198imp 445 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  y  <_  ( 2nd `  T
) )
200126, 127, 196, 199leadd1dd 10641 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
y  +  1 )  <_  ( ( 2nd `  T )  +  1 ) )
20160ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 2nd `  T
)  +  1 )  <_  N )
20257peano2zd 11485 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( ( 2nd `  T
)  +  1 )  e.  ZZ )
203202adantr 481 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  +  1 )  e.  ZZ )
204 elfz 12332 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( 2nd `  T
)  +  1 )  e.  ZZ  /\  (
y  +  1 )  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( 2nd `  T
)  +  1 )  e.  ( ( y  +  1 ) ... N )  <->  ( (
y  +  1 )  <_  ( ( 2nd `  T )  +  1 )  /\  ( ( 2nd `  T )  +  1 )  <_  N ) ) )
205203, 190, 191, 204syl3anc 1326 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  T
)  +  1 )  e.  ( ( y  +  1 ) ... N )  <->  ( (
y  +  1 )  <_  ( ( 2nd `  T )  +  1 )  /\  ( ( 2nd `  T )  +  1 )  <_  N ) ) )
206205adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( 2nd `  T
)  +  1 )  e.  ( ( y  +  1 ) ... N )  <->  ( (
y  +  1 )  <_  ( ( 2nd `  T )  +  1 )  /\  ( ( 2nd `  T )  +  1 )  <_  N ) ) )
207200, 201, 206mpbir2and 957 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 2nd `  T
)  +  1 )  e.  ( ( y  +  1 ) ... N ) )
208 prssi 4353 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 2nd `  T
)  e.  ( ( y  +  1 ) ... N )  /\  ( ( 2nd `  T
)  +  1 )  e.  ( ( y  +  1 ) ... N ) )  ->  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( ( y  +  1 ) ... N ) )
209195, 207, 208syl2anc 693 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  C_  (
( y  +  1 ) ... N ) )
210 imass2 5501 . . . . . . . . . . . . . . . . . 18  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( ( y  +  1 ) ... N )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  C_  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( y  +  1 ) ... N
) ) )
211209, 210syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  C_  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( y  +  1 ) ... N
) ) )
212179, 211eqsstr3d 3640 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  C_  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( y  +  1 ) ... N
) ) )
213176, 212eqssd 3620 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( y  +  1 ) ... N
) )  =  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
214 f1ofo 6144 . . . . . . . . . . . . . . . . . 18  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } -1-1-onto-> { ( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) }  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } : {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }
-onto-> { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) } )
215 forn 6118 . . . . . . . . . . . . . . . . . 18  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } : { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }
-onto-> { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) }  ->  ran 
{ <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  =  { ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) } )
21626, 214, 2153syl 18 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ran  { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  =  {
( ( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) } )
217216, 27syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ran  { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  =  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
218217ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  =  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
219213, 218eqtrd 2656 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( y  +  1 ) ... N
) )  =  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
220 undif 4049 . . . . . . . . . . . . . . . . 17  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( ( y  +  1 ) ... N )  <->  ( {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( ( y  +  1 ) ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( y  +  1 ) ... N ) )
221209, 220sylib 208 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( ( y  +  1 ) ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( y  +  1 ) ... N ) )
222221imaeq2d 5466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( ( y  +  1 ) ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )  =  ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( y  +  1 ) ... N ) ) )
223 fnresi 6008 . . . . . . . . . . . . . . . . . . 19  |-  (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  Fn  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )
224 incom 3805 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
225224, 32eqtri 2644 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)
226 fnimadisj 6012 . . . . . . . . . . . . . . . . . . 19  |-  ( ( (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )  Fn  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  /\  ( ( ( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/) )  -> 
( (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/) )
227223, 225, 226mp2an 708 . . . . . . . . . . . . . . . . . 18  |-  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)
228227a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/) )
229 nnuz 11723 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN  =  ( ZZ>= `  1 )
230188, 229syl6eleq 2711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  ( ZZ>= `  1
) )
231 fzss1 12380 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
y  +  1 ) ... N )  C_  ( 1 ... N
) )
232230, 231syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 ) ... N ) 
C_  ( 1 ... N ) )
233232ssdifd 3746 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  C_  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )
234 resiima 5480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  C_  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( ( ( y  +  1 ) ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )
235233, 234syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( ( ( y  +  1 ) ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )
236235ad2antlr 763 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( ( ( y  +  1 ) ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )
237228, 236uneq12d 3768 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )  =  ( (/)  u.  (
( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
238 imaundi 5545 . . . . . . . . . . . . . . . 16  |-  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( ( y  +  1 ) ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )  =  ( ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
239 uncom 3757 . . . . . . . . . . . . . . . . 17  |-  ( (/)  u.  ( ( ( y  +  1 ) ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( ( ( y  +  1 ) ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  u.  (/) )
240 un0 3967 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  u.  (/) )  =  ( ( ( y  +  1 ) ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
241239, 240eqtr2i 2645 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  +  1 ) ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  =  (
(/)  u.  ( (
( y  +  1 ) ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )
242237, 238, 2413eqtr4g 2681 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( ( y  +  1 ) ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )  =  ( ( ( y  +  1 ) ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
243222, 242eqtr3d 2658 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( ( y  +  1 ) ... N
) )  =  ( ( ( y  +  1 ) ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) )
244219, 243uneq12d 3768 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } " (
( y  +  1 ) ... N ) )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( y  +  1 ) ... N ) ) )  =  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( ( y  +  1 ) ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
245174, 244syl5eq 2668 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) "
( ( y  +  1 ) ... N
) )  =  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( ( y  +  1 ) ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
246245, 221eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) "
( ( y  +  1 ) ... N
) )  =  ( ( y  +  1 ) ... N ) )
247246imaeq2d 5466 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( ( y  +  1 ) ... N ) ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( y  +  1 ) ... N ) ) )
248173, 247syl5eq 2668 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
249248xpeq1d 5138 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( ( y  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )
250172, 249uneq12d 3768 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )
251250oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
252 iftrue 4092 . . . . . . . . 9  |-  ( y  <  ( 2nd `  T
)  ->  if (
y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  y )
253252csbeq1d 3540 . . . . . . . 8  |-  ( y  <  ( 2nd `  T
)  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
254 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
255 oveq2 6658 . . . . . . . . . . . . 13  |-  ( j  =  y  ->  (
1 ... j )  =  ( 1 ... y
) )
256255imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  =  ( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... y ) ) )
257256xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  y  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } ) )
258 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( j  =  y  ->  (
j  +  1 )  =  ( y  +  1 ) )
259258oveq1d 6665 . . . . . . . . . . . . 13  |-  ( j  =  y  ->  (
( j  +  1 ) ... N )  =  ( ( y  +  1 ) ... N ) )
260259imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( ( y  +  1 ) ... N ) ) )
261260xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  y  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) )
262257, 261uneq12d 3768 . . . . . . . . . 10  |-  ( j  =  y  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... y ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
263262oveq2d 6666 . . . . . . . . 9  |-  ( j  =  y  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
264254, 263csbie 3559 . . . . . . . 8  |-  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
265253, 264syl6eq 2672 . . . . . . 7  |-  ( y  <  ( 2nd `  T
)  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
266265adantl 482 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
267252csbeq1d 3540 . . . . . . . 8  |-  ( y  <  ( 2nd `  T
)  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
268255imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) ) )
269268xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... y
) )  X.  {
1 } ) )
270259imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  y  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) ) )
271270xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  y  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) )
272269, 271uneq12d 3768 . . . . . . . . . 10  |-  ( j  =  y  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) )
273272oveq2d 6666 . . . . . . . . 9  |-  ( j  =  y  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
274254, 273csbie 3559 . . . . . . . 8  |-  [_ y  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
275267, 274syl6eq 2672 . . . . . . 7  |-  ( y  <  ( 2nd `  T
)  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  T
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... y ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( y  +  1 ) ... N
) )  X.  {
0 } ) ) ) )
276275adantl 482 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... y ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( y  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
277251, 266, 2763eqtr4d 2666 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  y  <  ( 2nd `  T
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
278 lenlt 10116 . . . . . . . . . 10  |-  ( ( ( 2nd `  T
)  e.  RR  /\  y  e.  RR )  ->  ( ( 2nd `  T
)  <_  y  <->  -.  y  <  ( 2nd `  T
) ) )
27918, 118, 278syl2an 494 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  <_  y  <->  -.  y  <  ( 2nd `  T
) ) )
280279biimpar 502 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  -.  y  <  ( 2nd `  T
) )  ->  ( 2nd `  T )  <_ 
y )
281 imaco 5640 . . . . . . . . . . 11  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( 1 ... ( y  +  1 ) ) ) )
282 imaundir 5546 . . . . . . . . . . . . . 14  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( 1 ... ( y  +  1 ) ) )  =  ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } " (
1 ... ( y  +  1 ) ) )  u.  ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
1 ... ( y  +  1 ) ) ) )
283 imassrn 5477 . . . . . . . . . . . . . . . . . 18  |-  ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... (
y  +  1 ) ) )  C_  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }
284283a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... (
y  +  1 ) ) )  C_  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
285178ad2antrr 762 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  ran  { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
28617ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  e.  NN )
28718ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  e.  RR )
288118ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  y  e.  RR )
289188nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
y  +  1 )  e.  RR )
290289ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
y  +  1 )  e.  RR )
291 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  <_ 
y )
292118lep1d 10955 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <_  ( y  +  1 ) )
293292ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  y  <_  ( y  +  1 ) )
294287, 288, 290, 291, 293letrd 10194 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  <_ 
( y  +  1 ) )
295 fznn 12408 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +  1 )  e.  ZZ  ->  (
( 2nd `  T
)  e.  ( 1 ... ( y  +  1 ) )  <->  ( ( 2nd `  T )  e.  NN  /\  ( 2nd `  T )  <_  (
y  +  1 ) ) ) )
296189, 295syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( 2nd `  T
)  e.  ( 1 ... ( y  +  1 ) )  <->  ( ( 2nd `  T )  e.  NN  /\  ( 2nd `  T )  <_  (
y  +  1 ) ) ) )
297296ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  T
)  e.  ( 1 ... ( y  +  1 ) )  <->  ( ( 2nd `  T )  e.  NN  /\  ( 2nd `  T )  <_  (
y  +  1 ) ) ) )
298286, 294, 297mpbir2and 957 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  e.  ( 1 ... (
y  +  1 ) ) )
29950ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  T
)  +  1 )  e.  NN )
300 1red 10055 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  1  e.  RR )
301287, 288, 300, 291leadd1dd 10641 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  T
)  +  1 )  <_  ( y  +  1 ) )
302 fznn 12408 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  +  1 )  e.  ZZ  ->  (
( ( 2nd `  T
)  +  1 )  e.  ( 1 ... ( y  +  1 ) )  <->  ( (
( 2nd `  T
)  +  1 )  e.  NN  /\  (
( 2nd `  T
)  +  1 )  <_  ( y  +  1 ) ) ) )
303189, 302syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( 2nd `  T
)  +  1 )  e.  ( 1 ... ( y  +  1 ) )  <->  ( (
( 2nd `  T
)  +  1 )  e.  NN  /\  (
( 2nd `  T
)  +  1 )  <_  ( y  +  1 ) ) ) )
304303ad2antlr 763 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( 2nd `  T
)  +  1 )  e.  ( 1 ... ( y  +  1 ) )  <->  ( (
( 2nd `  T
)  +  1 )  e.  NN  /\  (
( 2nd `  T
)  +  1 )  <_  ( y  +  1 ) ) ) )
305299, 301, 304mpbir2and 957 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  T
)  +  1 )  e.  ( 1 ... ( y  +  1 ) ) )
306 prssi 4353 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  T
)  e.  ( 1 ... ( y  +  1 ) )  /\  ( ( 2nd `  T
)  +  1 )  e.  ( 1 ... ( y  +  1 ) ) )  ->  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( 1 ... ( y  +  1 ) ) )
307298, 305, 306syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  C_  (
1 ... ( y  +  1 ) ) )
308 imass2 5501 . . . . . . . . . . . . . . . . . . 19  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( 1 ... ( y  +  1 ) )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  C_  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... (
y  +  1 ) ) ) )
309307, 308syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  C_  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... (
y  +  1 ) ) ) )
310285, 309eqsstr3d 3640 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  C_  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... (
y  +  1 ) ) ) )
311284, 310eqssd 3620 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... (
y  +  1 ) ) )  =  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } )
312217ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ran  {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  =  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
313311, 312eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( 1 ... (
y  +  1 ) ) )  =  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
314 undif 4049 . . . . . . . . . . . . . . . . . 18  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } 
C_  ( 1 ... ( y  +  1 ) )  <->  ( {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( 1 ... ( y  +  1 ) ) )
315307, 314sylib 208 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( 1 ... ( y  +  1 ) ) )
316315imaeq2d 5466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... ( y  +  1 ) ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )  =  ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
1 ... ( y  +  1 ) ) ) )
317227a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/) )
318 eluzp1p1 11713 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  -  1 )  e.  ( ZZ>= `  y
)  ->  ( ( N  -  1 )  +  1 )  e.  ( ZZ>= `  ( y  +  1 ) ) )
319152, 318syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
320319adantl 482 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( N  -  1 )  +  1 )  e.  ( ZZ>= `  (
y  +  1 ) ) )
321151, 320eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  N  e.  ( ZZ>= `  ( y  +  1 ) ) )
322 fzss2 12381 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( N  e.  ( ZZ>= `  (
y  +  1 ) )  ->  ( 1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
323321, 322syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
1 ... ( y  +  1 ) )  C_  ( 1 ... N
) )
324323ssdifd 3746 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
325324adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
326 resiima 5480 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  ->  ( (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( 1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
327325, 326syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( ( 1 ... ( y  +  1 ) )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } ) )
328317, 327uneq12d 3768 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( (  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) " { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } ) ) )  =  ( (/)  u.  ( ( 1 ... ( y  +  1 ) )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
329 imaundi 5545 . . . . . . . . . . . . . . . . 17  |-  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )  =  ( ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
330 uncom 3757 . . . . . . . . . . . . . . . . . 18  |-  ( (/)  u.  ( ( 1 ... ( y  +  1 ) )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( ( 1 ... ( y  +  1 ) )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  u.  (/) )
331 un0 3967 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } )  u.  (/) )  =  (
( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } )
332330, 331eqtr2i 2645 . . . . . . . . . . . . . . . . 17  |-  ( ( 1 ... ( y  +  1 ) ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  =  (
(/)  u.  ( (
1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
333328, 329, 3323eqtr4g 2681 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) }  u.  ( ( 1 ... ( y  +  1 ) ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )  =  ( ( 1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
334316, 333eqtr3d 2658 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( 1 ... (
y  +  1 ) ) )  =  ( ( 1 ... (
y  +  1 ) )  \  { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) } ) )
335313, 334uneq12d 3768 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } " (
1 ... ( y  +  1 ) ) )  u.  ( (  _I  |`  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
1 ... ( y  +  1 ) ) ) )  =  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
336282, 335syl5eq 2668 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) "
( 1 ... (
y  +  1 ) ) )  =  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  u.  ( ( 1 ... ( y  +  1 ) )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
337336, 315eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) "
( 1 ... (
y  +  1 ) ) )  =  ( 1 ... ( y  +  1 ) ) )
338337imaeq2d 5466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( 1 ... ( y  +  1 ) ) ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) ) )
339281, 338syl5eq 2668 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
340339xpeq1d 5138 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } ) )
341 imaco 5640 . . . . . . . . . . 11  |-  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
342114ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  Fn  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
343 incom 3805 . . . . . . . . . . . . . . . 16  |-  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )
344128ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  T
)  +  1 )  e.  RR )
345188peano2nnd 11037 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  NN )
346345nnred 11035 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  RR )
347346ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( y  +  1 )  +  1 )  e.  RR )
34819ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  < 
( ( 2nd `  T
)  +  1 ) )
349118ltp1d 10954 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  y  <  ( y  +  1 ) )
350349ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  y  <  ( y  +  1 ) )
351287, 288, 290, 291, 350lelttrd 10195 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  < 
( y  +  1 ) )
352287, 290, 300, 351ltadd1dd 10638 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  T
)  +  1 )  <  ( ( y  +  1 )  +  1 ) )
353287, 344, 347, 348, 352lttrd 10198 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( 2nd `  T )  < 
( ( y  +  1 )  +  1 ) )
354 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( 2nd `  T
)  e.  RR  /\  ( ( y  +  1 )  +  1 )  e.  RR )  ->  ( ( 2nd `  T )  <  (
( y  +  1 )  +  1 )  <->  -.  ( ( y  +  1 )  +  1 )  <_  ( 2nd `  T ) ) )
35518, 346, 354syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( 2nd `  T
)  <  ( (
y  +  1 )  +  1 )  <->  -.  (
( y  +  1 )  +  1 )  <_  ( 2nd `  T
) ) )
356355adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  T
)  <  ( (
y  +  1 )  +  1 )  <->  -.  (
( y  +  1 )  +  1 )  <_  ( 2nd `  T
) ) )
357353, 356mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  -.  ( ( y  +  1 )  +  1 )  <_  ( 2nd `  T ) )
358 elfzle1 12344 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 2nd `  T )  e.  ( ( ( y  +  1 )  +  1 ) ... N )  ->  (
( y  +  1 )  +  1 )  <_  ( 2nd `  T
) )
359357, 358nsyl 135 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  -.  ( 2nd `  T )  e.  ( ( ( y  +  1 )  +  1 ) ... N ) )
360 disjsn 4246 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( y  +  1 )  +  1 ) ... N
)  i^i  { ( 2nd `  T ) } )  =  (/)  <->  -.  ( 2nd `  T )  e.  ( ( ( y  +  1 )  +  1 ) ... N
) )
361359, 360sylibr 224 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( y  +  1 )  +  1 ) ... N
)  i^i  { ( 2nd `  T ) } )  =  (/) )
362 ltnle 10117 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( 2nd `  T
)  +  1 )  e.  RR  /\  (
( y  +  1 )  +  1 )  e.  RR )  -> 
( ( ( 2nd `  T )  +  1 )  <  ( ( y  +  1 )  +  1 )  <->  -.  (
( y  +  1 )  +  1 )  <_  ( ( 2nd `  T )  +  1 ) ) )
363128, 346, 362syl2an 494 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  (
( ( 2nd `  T
)  +  1 )  <  ( ( y  +  1 )  +  1 )  <->  -.  (
( y  +  1 )  +  1 )  <_  ( ( 2nd `  T )  +  1 ) ) )
364363adantr 481 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( 2nd `  T
)  +  1 )  <  ( ( y  +  1 )  +  1 )  <->  -.  (
( y  +  1 )  +  1 )  <_  ( ( 2nd `  T )  +  1 ) ) )
365352, 364mpbid 222 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  -.  ( ( y  +  1 )  +  1 )  <_  ( ( 2nd `  T )  +  1 ) )
366 elfzle1 12344 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( 2nd `  T
)  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... N )  ->  (
( y  +  1 )  +  1 )  <_  ( ( 2nd `  T )  +  1 ) )
367365, 366nsyl 135 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  -.  ( ( 2nd `  T
)  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... N ) )
368 disjsn 4246 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( y  +  1 )  +  1 ) ... N
)  i^i  { (
( 2nd `  T
)  +  1 ) } )  =  (/)  <->  -.  ( ( 2nd `  T
)  +  1 )  e.  ( ( ( y  +  1 )  +  1 ) ... N ) )
369367, 368sylibr 224 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( y  +  1 )  +  1 ) ... N
)  i^i  { (
( 2nd `  T
)  +  1 ) } )  =  (/) )
370361, 369uneq12d 3768 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  {
( 2nd `  T
) } )  u.  ( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  {
( ( 2nd `  T
)  +  1 ) } ) )  =  ( (/)  u.  (/) ) )
371142ineq2i 3811 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  =  ( ( ( ( y  +  1 )  +  1 ) ... N
)  i^i  ( {
( 2nd `  T
) }  u.  {
( ( 2nd `  T
)  +  1 ) } ) )
372 indi 3873 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  ( { ( 2nd `  T ) }  u.  { ( ( 2nd `  T
)  +  1 ) } ) )  =  ( ( ( ( ( y  +  1 )  +  1 ) ... N )  i^i 
{ ( 2nd `  T
) } )  u.  ( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  {
( ( 2nd `  T
)  +  1 ) } ) )
373371, 372eqtr2i 2645 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( y  +  1 )  +  1 ) ... N
)  i^i  { ( 2nd `  T ) } )  u.  ( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  { ( ( 2nd `  T )  +  1 ) } ) )  =  ( ( ( ( y  +  1 )  +  1 ) ... N
)  i^i  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )
374370, 373, 1463eqtr3g 2679 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( y  +  1 )  +  1 ) ... N
)  i^i  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } )  =  (/) )
375343, 374syl5eq 2668 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  i^i  ( ( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
376 fnimadisj 6012 . . . . . . . . . . . . . . 15  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  Fn  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) }  /\  ( { ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) }  i^i  (
( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )  -> 
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } " (
( ( y  +  1 )  +  1 ) ... N ) )  =  (/) )
377342, 375, 376syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. } "
( ( ( y  +  1 )  +  1 ) ... N
) )  =  (/) )
378345, 229syl6eleq 2711 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
) )
379 fzss1 12380 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y  +  1 )  +  1 )  e.  ( ZZ>= `  1
)  ->  ( (
( y  +  1 )  +  1 ) ... N )  C_  ( 1 ... N
) )
380 reldisj 4020 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( y  +  1 )  +  1 ) ... N ) 
C_  ( 1 ... N )  ->  (
( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)  <->  ( (
( y  +  1 )  +  1 ) ... N )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
381378, 379, 3803syl 18 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( 0 ... ( N  -  1 ) )  ->  (
( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)  <->  ( (
( y  +  1 )  +  1 ) ... N )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
382381ad2antlr 763 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( ( y  +  1 )  +  1 ) ... N )  i^i  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  =  (/)  <->  ( (
( y  +  1 )  +  1 ) ... N )  C_  ( ( 1 ... N )  \  {
( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) )
383374, 382mpbid 222 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( y  +  1 )  +  1 ) ... N ) 
C_  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) )
384 resiima 5480 . . . . . . . . . . . . . . 15  |-  ( ( ( ( y  +  1 )  +  1 ) ... N ) 
C_  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } )  ->  ( (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
385383, 384syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
(  _I  |`  (
( 1 ... N
)  \  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
386377, 385uneq12d 3768 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. } " (
( ( y  +  1 )  +  1 ) ... N ) )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )  =  (
(/)  u.  ( (
( y  +  1 )  +  1 ) ... N ) ) )
387 imaundir 5546 . . . . . . . . . . . . 13  |-  ( ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. } " (
( ( y  +  1 )  +  1 ) ... N ) )  u.  ( (  _I  |`  ( (
1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )
388 uncom 3757 . . . . . . . . . . . . . 14  |-  ( (/)  u.  ( ( ( y  +  1 )  +  1 ) ... N
) )  =  ( ( ( ( y  +  1 )  +  1 ) ... N
)  u.  (/) )
389 un0 3967 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  +  1 )  +  1 ) ... N )  u.  (/) )  =  ( ( ( y  +  1 )  +  1 ) ... N )
390388, 389eqtr2i 2645 . . . . . . . . . . . . 13  |-  ( ( ( y  +  1 )  +  1 ) ... N )  =  ( (/)  u.  (
( ( y  +  1 )  +  1 ) ... N ) )
391386, 387, 3903eqtr4g 2681 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
392391imaeq2d 5466 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( {
<. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )  =  ( ( 2nd `  ( 1st `  T
) ) " (
( ( y  +  1 )  +  1 ) ... N ) ) )
393341, 392syl5eq 2668 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
394393xpeq1d 5138 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )
395340, 394uneq12d 3768 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  ( 2nd `  T )  <_ 
y )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) )
396280, 395syldan 487 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  -.  y  <  ( 2nd `  T
) )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) )
397396oveq2d 6666 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  -.  y  <  ( 2nd `  T
) )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
398 iffalse 4095 . . . . . . . . 9  |-  ( -.  y  <  ( 2nd `  T )  ->  if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  =  ( y  +  1 ) )
399398csbeq1d 3540 . . . . . . . 8  |-  ( -.  y  <  ( 2nd `  T )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ ( y  +  1 )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
400 ovex 6678 . . . . . . . . 9  |-  ( y  +  1 )  e. 
_V
401 oveq2 6658 . . . . . . . . . . . . 13  |-  ( j  =  ( y  +  1 )  ->  (
1 ... j )  =  ( 1 ... (
y  +  1 ) ) )
402401imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  =  ( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... ( y  +  1 ) ) ) )
403402xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } ) )
404 oveq1 6657 . . . . . . . . . . . . . 14  |-  ( j  =  ( y  +  1 )  ->  (
j  +  1 )  =  ( ( y  +  1 )  +  1 ) )
405404oveq1d 6665 . . . . . . . . . . . . 13  |-  ( j  =  ( y  +  1 )  ->  (
( j  +  1 ) ... N )  =  ( ( ( y  +  1 )  +  1 ) ... N ) )
406405imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( ( ( y  +  1 )  +  1 ) ... N ) ) )
407406xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( ( j  +  1 ) ... N ) )  X.  { 0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) )
408403, 407uneq12d 3768 . . . . . . . . . 10  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
409408oveq2d 6666 . . . . . . . . 9  |-  ( j  =  ( y  +  1 )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
410400, 409csbie 3559 . . . . . . . 8  |-  [_ (
y  +  1 )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
411399, 410syl6eq 2672 . . . . . . 7  |-  ( -.  y  <  ( 2nd `  T )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
412411adantl 482 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  -.  y  <  ( 2nd `  T
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
413398csbeq1d 3540 . . . . . . . 8  |-  ( -.  y  <  ( 2nd `  T )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ ( y  +  1 )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
414401imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  ( y  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) ) )
415414xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( 1 ... j ) )  X. 
{ 1 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( 1 ... (
y  +  1 ) ) )  X.  {
1 } ) )
416405imaeq2d 5466 . . . . . . . . . . . 12  |-  ( j  =  ( y  +  1 )  ->  (
( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  =  ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) ) )
417416xpeq1d 5138 . . . . . . . . . . 11  |-  ( j  =  ( y  +  1 )  ->  (
( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } )  =  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) )
418415, 417uneq12d 3768 . . . . . . . . . 10  |-  ( j  =  ( y  +  1 )  ->  (
( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )  =  ( ( ( ( 2nd `  ( 1st `  T ) )
" ( 1 ... ( y  +  1 ) ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) ) "
( ( ( y  +  1 )  +  1 ) ... N
) )  X.  {
0 } ) ) )
419418oveq2d 6666 . . . . . . . . 9  |-  ( j  =  ( y  +  1 )  ->  (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
420400, 419csbie 3559 . . . . . . . 8  |-  [_ (
y  +  1 )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
421413, 420syl6eq 2672 . . . . . . 7  |-  ( -.  y  <  ( 2nd `  T )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
422421adantl 482 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  -.  y  <  ( 2nd `  T
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... ( y  +  1 ) ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( ( y  +  1 )  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
423397, 412, 4223eqtr4d 2666 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  /\  -.  y  <  ( 2nd `  T
) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
424277, 423pm2.61dan 832 . . . 4  |-  ( (
ph  /\  y  e.  ( 0 ... ( N  -  1 ) ) )  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
425424mpteq2dva 4744 . . 3  |-  ( ph  ->  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  T
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  T ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
426111, 425eqtr4d 2659 . 2  |-  ( ph  ->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
427 opex 4932 . . . . . . 7  |-  <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>.  e.  _V
428427, 22op1std 7178 . . . . . 6  |-  ( t  =  <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  ->  ( 1st `  t )  = 
<. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. )
429427, 22op2ndd 7179 . . . . . 6  |-  ( t  =  <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  ->  ( 2nd `  t )  =  ( 2nd `  T
) )
430 breq2 4657 . . . . . . . . 9  |-  ( ( 2nd `  t )  =  ( 2nd `  T
)  ->  ( y  <  ( 2nd `  t
)  <->  y  <  ( 2nd `  T ) ) )
431430ifbid 4108 . . . . . . . 8  |-  ( ( 2nd `  t )  =  ( 2nd `  T
)  ->  if (
y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  =  if ( y  < 
( 2nd `  T
) ,  y ,  ( y  +  1 ) ) )
432431csbeq1d 3540 . . . . . . 7  |-  ( ( 2nd `  t )  =  ( 2nd `  T
)  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  / 
j ]_ ( ( 1st `  ( 1st `  t
) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
433 fvex 6201 . . . . . . . . . 10  |-  ( 1st `  ( 1st `  T
) )  e.  _V
434433, 79op1std 7178 . . . . . . . . 9  |-  ( ( 1st `  t )  =  <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >.  ->  ( 1st `  ( 1st `  t
) )  =  ( 1st `  ( 1st `  T ) ) )
435433, 79op2ndd 7179 . . . . . . . . 9  |-  ( ( 1st `  t )  =  <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >.  ->  ( 2nd `  ( 1st `  t
) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) ) )
436 id 22 . . . . . . . . . 10  |-  ( ( 1st `  ( 1st `  t ) )  =  ( 1st `  ( 1st `  T ) )  ->  ( 1st `  ( 1st `  t ) )  =  ( 1st `  ( 1st `  T ) ) )
437 imaeq1 5461 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) ) )
438437xpeq1d 5138 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  ( ( ( 2nd `  ( 1st `  t ) ) "
( 1 ... j
) )  X.  {
1 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } ) )
439 imaeq1 5461 . . . . . . . . . . . 12  |-  ( ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  ( ( 2nd `  ( 1st `  t
) ) " (
( j  +  1 ) ... N ) )  =  ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) ) )
440439xpeq1d 5138 . . . . . . . . . . 11  |-  ( ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } )  =  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) )
441438, 440uneq12d 3768 . . . . . . . . . 10  |-  ( ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )  ->  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) )  =  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )
442436, 441oveqan12d 6669 . . . . . . . . 9  |-  ( ( ( 1st `  ( 1st `  t ) )  =  ( 1st `  ( 1st `  T ) )  /\  ( 2nd `  ( 1st `  t ) )  =  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) )  ->  (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
443434, 435, 442syl2anc 693 . . . . . . . 8  |-  ( ( 1st `  t )  =  <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >.  ->  ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) ) "
( ( j  +  1 ) ... N
) )  X.  {
0 } ) ) )  =  ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) " ( 1 ... j ) )  X.  { 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
444443csbeq2dv 3992 . . . . . . 7  |-  ( ( 1st `  t )  =  <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >.  ->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
445432, 444sylan9eqr 2678 . . . . . 6  |-  ( ( ( 1st `  t
)  =  <. ( 1st `  ( 1st `  T
) ) ,  ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
>.  /\  ( 2nd `  t
)  =  ( 2nd `  T ) )  ->  [_ if ( y  < 
( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
446428, 429, 445syl2anc 693 . . . . 5  |-  ( t  =  <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  ->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) )  =  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )
447446mpteq2dv 4745 . . . 4  |-  ( t  =  <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  ->  (
y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  t ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) )
448447eqeq2d 2632 . . 3  |-  ( t  =  <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  ->  ( F  =  ( y  e.  ( 0 ... ( N  -  1 ) )  |->  [_ if ( y  <  ( 2nd `  t
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  t ) )  oF  +  ( ( ( ( 2nd `  ( 1st `  t
) ) " (
1 ... j ) )  X.  { 1 } )  u.  ( ( ( 2nd `  ( 1st `  t ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) )  <->  F  =  ( y  e.  ( 0 ... ( N  -  1 ) ) 
|->  [_ if ( y  <  ( 2nd `  T
) ,  y ,  ( y  +  1 ) )  /  j ]_ ( ( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
449448, 3elrab2 3366 . 2  |-  ( <. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  e.  S  <->  (
<. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  e.  ( ( ( ( 0..^ K )  ^m  (
1 ... N ) )  X.  { f  |  f : ( 1 ... N ) -1-1-onto-> ( 1 ... N ) } )  X.  ( 0 ... N ) )  /\  F  =  ( y  e.  ( 0 ... ( N  - 
1 ) )  |->  [_ if ( y  <  ( 2nd `  T ) ,  y ,  ( y  +  1 ) )  /  j ]_ (
( 1st `  ( 1st `  T ) )  oF  +  ( ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 )
>. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( 1 ... j ) )  X. 
{ 1 } )  u.  ( ( ( ( 2nd `  ( 1st `  T ) )  o.  ( { <. ( 2nd `  T ) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. (
( 2nd `  T
)  +  1 ) ,  ( 2nd `  T
) >. }  u.  (  _I  |`  ( ( 1 ... N )  \  { ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) } ) ) ) )
" ( ( j  +  1 ) ... N ) )  X. 
{ 0 } ) ) ) ) ) )
45091, 426, 449sylanbrc 698 1  |-  ( ph  -> 
<. <. ( 1st `  ( 1st `  T ) ) ,  ( ( 2nd `  ( 1st `  T
) )  o.  ( { <. ( 2nd `  T
) ,  ( ( 2nd `  T )  +  1 ) >. ,  <. ( ( 2nd `  T )  +  1 ) ,  ( 2nd `  T ) >. }  u.  (  _I  |`  ( ( 1 ... N ) 
\  { ( 2nd `  T ) ,  ( ( 2nd `  T
)  +  1 ) } ) ) ) ) >. ,  ( 2nd `  T ) >.  e.  S
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    oFcof 6895   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327
This theorem is referenced by:  poimirlem22  33431
  Copyright terms: Public domain W3C validator