MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsval Structured version   Visualization version   Unicode version

Theorem fclsval 21812
Description: The set of all cluster points of a filter. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsval.x  |-  X  = 
U. J
Assertion
Ref Expression
fclsval  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( J  fClus  F )  =  if ( X  =  Y ,  |^|_ t  e.  F  (
( cls `  J
) `  t ) ,  (/) ) )
Distinct variable groups:    t, F    t, J
Allowed substitution hints:    X( t)    Y( t)

Proof of Theorem fclsval
Dummy variables  f 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  J  e.  Top )
2 fvssunirn 6217 . . . . 5  |-  ( Fil `  Y )  C_  U. ran  Fil
32sseli 3599 . . . 4  |-  ( F  e.  ( Fil `  Y
)  ->  F  e.  U.
ran  Fil )
43adantl 482 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  F  e.  U. ran  Fil )
5 filn0 21666 . . . . . 6  |-  ( F  e.  ( Fil `  Y
)  ->  F  =/=  (/) )
65adantl 482 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  F  =/=  (/) )
7 fvex 6201 . . . . . 6  |-  ( ( cls `  J ) `
 t )  e. 
_V
87rgenw 2924 . . . . 5  |-  A. t  e.  F  ( ( cls `  J ) `  t )  e.  _V
9 iinexg 4824 . . . . 5  |-  ( ( F  =/=  (/)  /\  A. t  e.  F  (
( cls `  J
) `  t )  e.  _V )  ->  |^|_ t  e.  F  ( ( cls `  J ) `  t )  e.  _V )
106, 8, 9sylancl 694 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  |^|_ t  e.  F  ( ( cls `  J
) `  t )  e.  _V )
11 0ex 4790 . . . 4  |-  (/)  e.  _V
12 ifcl 4130 . . . 4  |-  ( (
|^|_ t  e.  F  ( ( cls `  J
) `  t )  e.  _V  /\  (/)  e.  _V )  ->  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J
) `  t ) ,  (/) )  e.  _V )
1310, 11, 12sylancl 694 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J ) `  t
) ,  (/) )  e. 
_V )
14 unieq 4444 . . . . . . 7  |-  ( j  =  J  ->  U. j  =  U. J )
15 fclsval.x . . . . . . 7  |-  X  = 
U. J
1614, 15syl6eqr 2674 . . . . . 6  |-  ( j  =  J  ->  U. j  =  X )
17 unieq 4444 . . . . . 6  |-  ( f  =  F  ->  U. f  =  U. F )
1816, 17eqeqan12d 2638 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  ->  ( U. j  = 
U. f  <->  X  =  U. F ) )
19 iineq1 4535 . . . . . . 7  |-  ( f  =  F  ->  |^|_ t  e.  f  ( ( cls `  j ) `  t )  =  |^|_ t  e.  F  (
( cls `  j
) `  t )
)
2019adantl 482 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  -> 
|^|_ t  e.  f  ( ( cls `  j
) `  t )  =  |^|_ t  e.  F  ( ( cls `  j
) `  t )
)
21 simpll 790 . . . . . . . . 9  |-  ( ( ( j  =  J  /\  f  =  F )  /\  t  e.  F )  ->  j  =  J )
2221fveq2d 6195 . . . . . . . 8  |-  ( ( ( j  =  J  /\  f  =  F )  /\  t  e.  F )  ->  ( cls `  j )  =  ( cls `  J
) )
2322fveq1d 6193 . . . . . . 7  |-  ( ( ( j  =  J  /\  f  =  F )  /\  t  e.  F )  ->  (
( cls `  j
) `  t )  =  ( ( cls `  J ) `  t
) )
2423iineq2dv 4543 . . . . . 6  |-  ( ( j  =  J  /\  f  =  F )  -> 
|^|_ t  e.  F  ( ( cls `  j
) `  t )  =  |^|_ t  e.  F  ( ( cls `  J
) `  t )
)
2520, 24eqtrd 2656 . . . . 5  |-  ( ( j  =  J  /\  f  =  F )  -> 
|^|_ t  e.  f  ( ( cls `  j
) `  t )  =  |^|_ t  e.  F  ( ( cls `  J
) `  t )
)
2618, 25ifbieq1d 4109 . . . 4  |-  ( ( j  =  J  /\  f  =  F )  ->  if ( U. j  =  U. f ,  |^|_ t  e.  f  (
( cls `  j
) `  t ) ,  (/) )  =  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J ) `  t
) ,  (/) ) )
27 df-fcls 21745 . . . 4  |-  fClus  =  ( j  e.  Top , 
f  e.  U. ran  Fil  |->  if ( U. j  =  U. f ,  |^|_ t  e.  f  (
( cls `  j
) `  t ) ,  (/) ) )
2826, 27ovmpt2ga 6790 . . 3  |-  ( ( J  e.  Top  /\  F  e.  U. ran  Fil  /\  if ( X  = 
U. F ,  |^|_ t  e.  F  (
( cls `  J
) `  t ) ,  (/) )  e.  _V )  ->  ( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J
) `  t ) ,  (/) ) )
291, 4, 13, 28syl3anc 1326 . 2  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( J  fClus  F )  =  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J
) `  t ) ,  (/) ) )
30 filunibas 21685 . . . . 5  |-  ( F  e.  ( Fil `  Y
)  ->  U. F  =  Y )
3130eqeq2d 2632 . . . 4  |-  ( F  e.  ( Fil `  Y
)  ->  ( X  =  U. F  <->  X  =  Y ) )
3231adantl 482 . . 3  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( X  =  U. F 
<->  X  =  Y ) )
3332ifbid 4108 . 2  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  ->  if ( X  =  U. F ,  |^|_ t  e.  F  ( ( cls `  J ) `  t
) ,  (/) )  =  if ( X  =  Y ,  |^|_ t  e.  F  ( ( cls `  J ) `  t ) ,  (/) ) )
3429, 33eqtrd 2656 1  |-  ( ( J  e.  Top  /\  F  e.  ( Fil `  Y ) )  -> 
( J  fClus  F )  =  if ( X  =  Y ,  |^|_ t  e.  F  (
( cls `  J
) `  t ) ,  (/) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   ifcif 4086   U.cuni 4436   |^|_ciin 4521   ran crn 5115   ` cfv 5888  (class class class)co 6650   Topctop 20698   clsccl 20822   Filcfil 21649    fClus cfcls 21740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fil 21650  df-fcls 21745
This theorem is referenced by:  isfcls  21813  fclscmpi  21833
  Copyright terms: Public domain W3C validator