MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filunirn Structured version   Visualization version   Unicode version

Theorem filunirn 21686
Description: Two ways to express a filter on an unspecified base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filunirn  |-  ( F  e.  U. ran  Fil  <->  F  e.  ( Fil `  U. F ) )

Proof of Theorem filunirn
Dummy variables  y  w  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . . 6  |-  ( fBas `  y )  e.  _V
21rabex 4813 . . . . 5  |-  { w  e.  ( fBas `  y
)  |  A. z  e.  ~P  y ( ( w  i^i  ~P z
)  =/=  (/)  ->  z  e.  w ) }  e.  _V
3 df-fil 21650 . . . . 5  |-  Fil  =  ( y  e.  _V  |->  { w  e.  ( fBas `  y )  | 
A. z  e.  ~P  y ( ( w  i^i  ~P z )  =/=  (/)  ->  z  e.  w ) } )
42, 3fnmpti 6022 . . . 4  |-  Fil  Fn  _V
5 fnunirn 6511 . . . 4  |-  ( Fil 
Fn  _V  ->  ( F  e.  U. ran  Fil  <->  E. x  e.  _V  F  e.  ( Fil `  x
) ) )
64, 5ax-mp 5 . . 3  |-  ( F  e.  U. ran  Fil  <->  E. x  e.  _V  F  e.  ( Fil `  x
) )
7 filunibas 21685 . . . . . . 7  |-  ( F  e.  ( Fil `  x
)  ->  U. F  =  x )
87fveq2d 6195 . . . . . 6  |-  ( F  e.  ( Fil `  x
)  ->  ( Fil ` 
U. F )  =  ( Fil `  x
) )
98eleq2d 2687 . . . . 5  |-  ( F  e.  ( Fil `  x
)  ->  ( F  e.  ( Fil `  U. F )  <->  F  e.  ( Fil `  x ) ) )
109ibir 257 . . . 4  |-  ( F  e.  ( Fil `  x
)  ->  F  e.  ( Fil `  U. F
) )
1110rexlimivw 3029 . . 3  |-  ( E. x  e.  _V  F  e.  ( Fil `  x
)  ->  F  e.  ( Fil `  U. F
) )
126, 11sylbi 207 . 2  |-  ( F  e.  U. ran  Fil  ->  F  e.  ( Fil `  U. F ) )
13 fvssunirn 6217 . . 3  |-  ( Fil `  U. F )  C_  U.
ran  Fil
1413sseli 3599 . 2  |-  ( F  e.  ( Fil `  U. F )  ->  F  e.  U. ran  Fil )
1512, 14impbii 199 1  |-  ( F  e.  U. ran  Fil  <->  F  e.  ( Fil `  U. F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   ran crn 5115    Fn wfn 5883   ` cfv 5888   fBascfbas 19734   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-fbas 19743  df-fil 21650
This theorem is referenced by:  flimfil  21773  isfcls  21813
  Copyright terms: Public domain W3C validator