| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flffbas | Structured version Visualization version Unicode version | ||
| Description: Limit points of a function can be defined using filter bases. (Contributed by Jeff Hankins, 9-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| flffbas.l |
|
| Ref | Expression |
|---|---|
| flffbas |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flffbas.l |
. . . 4
| |
| 2 | fgcl 21682 |
. . . 4
| |
| 3 | 1, 2 | syl5eqel 2705 |
. . 3
|
| 4 | isflf 21797 |
. . 3
| |
| 5 | 3, 4 | syl3an2 1360 |
. 2
|
| 6 | 1 | eleq2i 2693 |
. . . . . . . 8
|
| 7 | elfg 21675 |
. . . . . . . . . . 11
| |
| 8 | 7 | 3ad2ant2 1083 |
. . . . . . . . . 10
|
| 9 | sstr2 3610 |
. . . . . . . . . . . . . . . 16
| |
| 10 | imass2 5501 |
. . . . . . . . . . . . . . . 16
| |
| 11 | 9, 10 | syl11 33 |
. . . . . . . . . . . . . . 15
|
| 12 | 11 | adantl 482 |
. . . . . . . . . . . . . 14
|
| 13 | 12 | reximdv 3016 |
. . . . . . . . . . . . 13
|
| 14 | 13 | ex 450 |
. . . . . . . . . . . 12
|
| 15 | 14 | com23 86 |
. . . . . . . . . . 11
|
| 16 | 15 | adantld 483 |
. . . . . . . . . 10
|
| 17 | 8, 16 | sylbid 230 |
. . . . . . . . 9
|
| 18 | 17 | adantr 481 |
. . . . . . . 8
|
| 19 | 6, 18 | syl5bi 232 |
. . . . . . 7
|
| 20 | 19 | rexlimdv 3030 |
. . . . . 6
|
| 21 | ssfg 21676 |
. . . . . . . . . . . 12
| |
| 22 | 21, 1 | syl6sseqr 3652 |
. . . . . . . . . . 11
|
| 23 | 22 | sselda 3603 |
. . . . . . . . . 10
|
| 24 | 23 | 3ad2antl2 1224 |
. . . . . . . . 9
|
| 25 | 24 | ad2ant2r 783 |
. . . . . . . 8
|
| 26 | simprr 796 |
. . . . . . . 8
| |
| 27 | imaeq2 5462 |
. . . . . . . . . 10
| |
| 28 | 27 | sseq1d 3632 |
. . . . . . . . 9
|
| 29 | 28 | rspcev 3309 |
. . . . . . . 8
|
| 30 | 25, 26, 29 | syl2anc 693 |
. . . . . . 7
|
| 31 | 30 | rexlimdvaa 3032 |
. . . . . 6
|
| 32 | 20, 31 | impbid 202 |
. . . . 5
|
| 33 | 32 | imbi2d 330 |
. . . 4
|
| 34 | 33 | ralbidv 2986 |
. . 3
|
| 35 | 34 | pm5.32da 673 |
. 2
|
| 36 | 5, 35 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-fbas 19743 df-fg 19744 df-top 20699 df-topon 20716 df-ntr 20824 df-nei 20902 df-fil 21650 df-fm 21742 df-flim 21743 df-flf 21744 |
| This theorem is referenced by: lmflf 21809 eltsms 21936 |
| Copyright terms: Public domain | W3C validator |