Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin2 Structured version   Visualization version   Unicode version

Theorem fnejoin2 32364
Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Distinct variable groups:    x, y, S    x, V    x, X, y    x, T
Allowed substitution hints:    T( y)    V( y)

Proof of Theorem fnejoin2
StepHypRef Expression
1 unisng 4452 . . . . . . . . 9  |-  ( X  e.  V  ->  U. { X }  =  X
)
21eqcomd 2628 . . . . . . . 8  |-  ( X  e.  V  ->  X  =  U. { X }
)
32adantr 481 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. { X } )
4 iftrue 4092 . . . . . . . . 9  |-  ( S  =  (/)  ->  if ( S  =  (/) ,  { X } ,  U. S
)  =  { X } )
54unieqd 4446 . . . . . . . 8  |-  ( S  =  (/)  ->  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. { X } )
65eqeq2d 2632 . . . . . . 7  |-  ( S  =  (/)  ->  ( X  =  U. if ( S  =  (/) ,  { X } ,  U. S
)  <->  X  =  U. { X } ) )
73, 6syl5ibrcom 237 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
8 n0 3931 . . . . . . 7  |-  ( S  =/=  (/)  <->  E. x  x  e.  S )
9 unieq 4444 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  U. y  =  U. x )
109eqeq2d 2632 . . . . . . . . . . . 12  |-  ( y  =  x  ->  ( X  =  U. y  <->  X  =  U. x ) )
1110rspccva 3308 . . . . . . . . . . 11  |-  ( ( A. y  e.  S  X  =  U. y  /\  x  e.  S
)  ->  X  =  U. x )
12113adant1 1079 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. x )
13 fnejoin1 32363 . . . . . . . . . . 11  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  x Fne if ( S  =  (/) ,  { X } ,  U. S ) )
14 eqid 2622 . . . . . . . . . . . 12  |-  U. x  =  U. x
15 eqid 2622 . . . . . . . . . . . 12  |-  U. if ( S  =  (/) ,  { X } ,  U. S
)  =  U. if ( S  =  (/) ,  { X } ,  U. S
)
1614, 15fnebas 32339 . . . . . . . . . . 11  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1713, 16syl 17 . . . . . . . . . 10  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  U. x  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
1812, 17eqtrd 2656 . . . . . . . . 9  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) )
19183expia 1267 . . . . . . . 8  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) ) )
2019exlimdv 1861 . . . . . . 7  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( E. x  x  e.  S  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
218, 20syl5bi 232 . . . . . 6  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( S  =/=  (/)  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S ) ) )
227, 21pm2.61dne 2880 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
23 eqid 2622 . . . . . 6  |-  U. T  =  U. T
2415, 23fnebas 32339 . . . . 5  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T )
2522, 24sylan9eq 2676 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  X  =  U. T )
2625ex 450 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  X  =  U. T ) )
27 fnetr 32346 . . . . . . 7  |-  ( ( x Fne if ( S  =  (/) ,  { X } ,  U. S
)  /\  if ( S  =  (/) ,  { X } ,  U. S
) Fne T )  ->  x Fne T
)
2827ex 450 . . . . . 6  |-  ( x Fne if ( S  =  (/) ,  { X } ,  U. S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S
) Fne T  ->  x Fne T ) )
2913, 28syl 17 . . . . 5  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
30293expa 1265 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  x  e.  S )  ->  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  x Fne T ) )
3130ralrimdva 2969 . . 3  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  A. x  e.  S  x Fne T ) )
3226, 31jcad 555 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  ->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
3322adantr 481 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. if ( S  =  (/) ,  { X } ,  U. S
) )
34 simprl 794 . . . . 5  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  =  U. T )
3533, 34eqtr3d 2658 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. if ( S  =  (/) ,  { X } ,  U. S )  = 
U. T )
36 sseq1 3626 . . . . 5  |-  ( { X }  =  if ( S  =  (/) ,  { X } ,  U. S )  ->  ( { X }  C_  ( topGen `
 T )  <->  if ( S  =  (/) ,  { X } ,  U. S
)  C_  ( topGen `  T ) ) )
37 sseq1 3626 . . . . 5  |-  ( U. S  =  if ( S  =  (/) ,  { X } ,  U. S
)  ->  ( U. S  C_  ( topGen `  T
)  <->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `  T )
) )
38 elex 3212 . . . . . . . . . . . 12  |-  ( X  e.  V  ->  X  e.  _V )
3938ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  _V )
4034, 39eqeltrrd 2702 . . . . . . . . . 10  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  _V )
41 uniexb 6973 . . . . . . . . . 10  |-  ( T  e.  _V  <->  U. T  e. 
_V )
4240, 41sylibr 224 . . . . . . . . 9  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  T  e.  _V )
43 ssid 3624 . . . . . . . . 9  |-  T  C_  T
44 eltg3i 20765 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  T  C_  T )  ->  U. T  e.  ( topGen `
 T ) )
4542, 43, 44sylancl 694 . . . . . . . 8  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  U. T  e.  ( topGen `
 T ) )
4634, 45eqeltrd 2701 . . . . . . 7  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  X  e.  ( topGen `  T ) )
4746snssd 4340 . . . . . 6  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  { X }  C_  ( topGen `
 T ) )
4847adantr 481 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  S  =  (/) )  ->  { X }  C_  ( topGen `  T )
)
49 simplrr 801 . . . . . . 7  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x Fne T )
50 fnetg 32340 . . . . . . . 8  |-  ( x Fne T  ->  x  C_  ( topGen `  T )
)
5150ralimi 2952 . . . . . . 7  |-  ( A. x  e.  S  x Fne T  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
5249, 51syl 17 . . . . . 6  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  A. x  e.  S  x  C_  ( topGen `
 T ) )
53 unissb 4469 . . . . . 6  |-  ( U. S  C_  ( topGen `  T
)  <->  A. x  e.  S  x  C_  ( topGen `  T
) )
5452, 53sylibr 224 . . . . 5  |-  ( ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  /\  -.  S  =  (/) )  ->  U. S  C_  ( topGen `  T )
)
5536, 37, 48, 54ifbothda 4123 . . . 4  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) )
5615, 23isfne4 32335 . . . 4  |-  ( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( U. if ( S  =  (/) ,  { X } ,  U. S )  =  U. T  /\  if ( S  =  (/) ,  { X } ,  U. S )  C_  ( topGen `
 T ) ) )
5735, 55, 56sylanbrc 698 . . 3  |-  ( ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y
)  /\  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) )  ->  if ( S  =  (/) ,  { X } ,  U. S ) Fne T
)
5857ex 450 . 2  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( ( X  = 
U. T  /\  A. x  e.  S  x Fne T )  ->  if ( S  =  (/) ,  { X } ,  U. S
) Fne T ) )
5932, 58impbid 202 1  |-  ( ( X  e.  V  /\  A. y  e.  S  X  =  U. y )  -> 
( if ( S  =  (/) ,  { X } ,  U. S ) Fne T  <->  ( X  =  U. T  /\  A. x  e.  S  x Fne T ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   {csn 4177   U.cuni 4436   class class class wbr 4653   ` cfv 5888   topGenctg 16098   Fnecfne 32331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-topgen 16104  df-fne 32332
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator