| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnejoin2 | Structured version Visualization version Unicode version | ||
| Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| fnejoin2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisng 4452 |
. . . . . . . . 9
| |
| 2 | 1 | eqcomd 2628 |
. . . . . . . 8
|
| 3 | 2 | adantr 481 |
. . . . . . 7
|
| 4 | iftrue 4092 |
. . . . . . . . 9
| |
| 5 | 4 | unieqd 4446 |
. . . . . . . 8
|
| 6 | 5 | eqeq2d 2632 |
. . . . . . 7
|
| 7 | 3, 6 | syl5ibrcom 237 |
. . . . . 6
|
| 8 | n0 3931 |
. . . . . . 7
| |
| 9 | unieq 4444 |
. . . . . . . . . . . . 13
| |
| 10 | 9 | eqeq2d 2632 |
. . . . . . . . . . . 12
|
| 11 | 10 | rspccva 3308 |
. . . . . . . . . . 11
|
| 12 | 11 | 3adant1 1079 |
. . . . . . . . . 10
|
| 13 | fnejoin1 32363 |
. . . . . . . . . . 11
| |
| 14 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 15 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 16 | 14, 15 | fnebas 32339 |
. . . . . . . . . . 11
|
| 17 | 13, 16 | syl 17 |
. . . . . . . . . 10
|
| 18 | 12, 17 | eqtrd 2656 |
. . . . . . . . 9
|
| 19 | 18 | 3expia 1267 |
. . . . . . . 8
|
| 20 | 19 | exlimdv 1861 |
. . . . . . 7
|
| 21 | 8, 20 | syl5bi 232 |
. . . . . 6
|
| 22 | 7, 21 | pm2.61dne 2880 |
. . . . 5
|
| 23 | eqid 2622 |
. . . . . 6
| |
| 24 | 15, 23 | fnebas 32339 |
. . . . 5
|
| 25 | 22, 24 | sylan9eq 2676 |
. . . 4
|
| 26 | 25 | ex 450 |
. . 3
|
| 27 | fnetr 32346 |
. . . . . . 7
| |
| 28 | 27 | ex 450 |
. . . . . 6
|
| 29 | 13, 28 | syl 17 |
. . . . 5
|
| 30 | 29 | 3expa 1265 |
. . . 4
|
| 31 | 30 | ralrimdva 2969 |
. . 3
|
| 32 | 26, 31 | jcad 555 |
. 2
|
| 33 | 22 | adantr 481 |
. . . . 5
|
| 34 | simprl 794 |
. . . . 5
| |
| 35 | 33, 34 | eqtr3d 2658 |
. . . 4
|
| 36 | sseq1 3626 |
. . . . 5
| |
| 37 | sseq1 3626 |
. . . . 5
| |
| 38 | elex 3212 |
. . . . . . . . . . . 12
| |
| 39 | 38 | ad2antrr 762 |
. . . . . . . . . . 11
|
| 40 | 34, 39 | eqeltrrd 2702 |
. . . . . . . . . 10
|
| 41 | uniexb 6973 |
. . . . . . . . . 10
| |
| 42 | 40, 41 | sylibr 224 |
. . . . . . . . 9
|
| 43 | ssid 3624 |
. . . . . . . . 9
| |
| 44 | eltg3i 20765 |
. . . . . . . . 9
| |
| 45 | 42, 43, 44 | sylancl 694 |
. . . . . . . 8
|
| 46 | 34, 45 | eqeltrd 2701 |
. . . . . . 7
|
| 47 | 46 | snssd 4340 |
. . . . . 6
|
| 48 | 47 | adantr 481 |
. . . . 5
|
| 49 | simplrr 801 |
. . . . . . 7
| |
| 50 | fnetg 32340 |
. . . . . . . 8
| |
| 51 | 50 | ralimi 2952 |
. . . . . . 7
|
| 52 | 49, 51 | syl 17 |
. . . . . 6
|
| 53 | unissb 4469 |
. . . . . 6
| |
| 54 | 52, 53 | sylibr 224 |
. . . . 5
|
| 55 | 36, 37, 48, 54 | ifbothda 4123 |
. . . 4
|
| 56 | 15, 23 | isfne4 32335 |
. . . 4
|
| 57 | 35, 55, 56 | sylanbrc 698 |
. . 3
|
| 58 | 57 | ex 450 |
. 2
|
| 59 | 32, 58 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-topgen 16104 df-fne 32332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |