Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fphpd Structured version   Visualization version   Unicode version

Theorem fphpd 37380
Description: Pigeonhole principle expressed with implicit substitution. If the range is smaller than the domain, two inputs must be mapped to the same output. (Contributed by Stefan O'Rear, 19-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
fphpd.a  |-  ( ph  ->  B  ~<  A )
fphpd.b  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
fphpd.c  |-  ( x  =  y  ->  C  =  D )
Assertion
Ref Expression
fphpd  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Distinct variable groups:    x, A, y    x, B, y    y, C    x, D    ph, x, y
Allowed substitution hints:    C( x)    D( y)

Proof of Theorem fphpd
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnsym 8086 . . . 4  |-  ( A  ~<_  B  ->  -.  B  ~<  A )
2 fphpd.a . . . 4  |-  ( ph  ->  B  ~<  A )
31, 2nsyl3 133 . . 3  |-  ( ph  ->  -.  A  ~<_  B )
4 relsdom 7962 . . . . . . 7  |-  Rel  ~<
54brrelexi 5158 . . . . . 6  |-  ( B 
~<  A  ->  B  e. 
_V )
62, 5syl 17 . . . . 5  |-  ( ph  ->  B  e.  _V )
76adantr 481 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  B  e.  _V )
8 nfv 1843 . . . . . . . . 9  |-  F/ x
( ph  /\  a  e.  A )
9 nfcsb1v 3549 . . . . . . . . . 10  |-  F/_ x [_ a  /  x ]_ C
109nfel1 2779 . . . . . . . . 9  |-  F/ x [_ a  /  x ]_ C  e.  B
118, 10nfim 1825 . . . . . . . 8  |-  F/ x
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
)
12 eleq1 2689 . . . . . . . . . 10  |-  ( x  =  a  ->  (
x  e.  A  <->  a  e.  A ) )
1312anbi2d 740 . . . . . . . . 9  |-  ( x  =  a  ->  (
( ph  /\  x  e.  A )  <->  ( ph  /\  a  e.  A ) ) )
14 csbeq1a 3542 . . . . . . . . . 10  |-  ( x  =  a  ->  C  =  [_ a  /  x ]_ C )
1514eleq1d 2686 . . . . . . . . 9  |-  ( x  =  a  ->  ( C  e.  B  <->  [_ a  /  x ]_ C  e.  B
) )
1613, 15imbi12d 334 . . . . . . . 8  |-  ( x  =  a  ->  (
( ( ph  /\  x  e.  A )  ->  C  e.  B )  <-> 
( ( ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B
) ) )
17 fphpd.b . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  C  e.  B )
1811, 16, 17chvar 2262 . . . . . . 7  |-  ( (
ph  /\  a  e.  A )  ->  [_ a  /  x ]_ C  e.  B )
1918ex 450 . . . . . 6  |-  ( ph  ->  ( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
2019adantr 481 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( a  e.  A  ->  [_ a  /  x ]_ C  e.  B
) )
21 csbid 3541 . . . . . . . . . . 11  |-  [_ x  /  x ]_ C  =  C
22 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
23 fphpd.c . . . . . . . . . . . 12  |-  ( x  =  y  ->  C  =  D )
2422, 23csbie 3559 . . . . . . . . . . 11  |-  [_ y  /  x ]_ C  =  D
2521, 24eqeq12i 2636 . . . . . . . . . 10  |-  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  C  =  D
)
2625imbi1i 339 . . . . . . . . 9  |-  ( (
[_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  ( C  =  D  ->  x  =  y )
)
27262ralbii 2981 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
28 nfcsb1v 3549 . . . . . . . . . . . 12  |-  F/_ x [_ y  /  x ]_ C
299, 28nfeq 2776 . . . . . . . . . . 11  |-  F/ x [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
30 nfv 1843 . . . . . . . . . . 11  |-  F/ x  a  =  y
3129, 30nfim 1825 . . . . . . . . . 10  |-  F/ x
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )
32 nfv 1843 . . . . . . . . . 10  |-  F/ y ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  ->  a  =  b )
33 csbeq1 3536 . . . . . . . . . . . 12  |-  ( x  =  a  ->  [_ x  /  x ]_ C  = 
[_ a  /  x ]_ C )
3433eqeq1d 2624 . . . . . . . . . . 11  |-  ( x  =  a  ->  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ y  /  x ]_ C
) )
35 equequ1 1952 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
x  =  y  <->  a  =  y ) )
3634, 35imbi12d 334 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  <->  (
[_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y ) ) )
37 csbeq1 3536 . . . . . . . . . . . 12  |-  ( y  =  b  ->  [_ y  /  x ]_ C  = 
[_ b  /  x ]_ C )
3837eqeq2d 2632 . . . . . . . . . . 11  |-  ( y  =  b  ->  ( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  <->  [_ a  /  x ]_ C  =  [_ b  /  x ]_ C
) )
39 equequ2 1953 . . . . . . . . . . 11  |-  ( y  =  b  ->  (
a  =  y  <->  a  =  b ) )
4038, 39imbi12d 334 . . . . . . . . . 10  |-  ( y  =  b  ->  (
( [_ a  /  x ]_ C  =  [_ y  /  x ]_ C  -> 
a  =  y )  <-> 
( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4131, 32, 36, 40rspc2 3320 . . . . . . . . 9  |-  ( ( a  e.  A  /\  b  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  = 
[_ y  /  x ]_ C  ->  x  =  y )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4241com12 32 . . . . . . . 8  |-  ( A. x  e.  A  A. y  e.  A  ( [_ x  /  x ]_ C  =  [_ y  /  x ]_ C  ->  x  =  y )  ->  ( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
4327, 42sylbir 225 . . . . . . 7  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b ) ) )
44 id 22 . . . . . . . 8  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  ->  a  =  b ) )
45 csbeq1 3536 . . . . . . . 8  |-  ( a  =  b  ->  [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C )
4644, 45impbid1 215 . . . . . . 7  |-  ( (
[_ a  /  x ]_ C  =  [_ b  /  x ]_ C  -> 
a  =  b )  ->  ( [_ a  /  x ]_ C  = 
[_ b  /  x ]_ C  <->  a  =  b ) )
4743, 46syl6 35 . . . . . 6  |-  ( A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
4847adantl 482 . . . . 5  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( ( a  e.  A  /\  b  e.  A )  ->  ( [_ a  /  x ]_ C  =  [_ b  /  x ]_ C  <->  a  =  b ) ) )
4920, 48dom2d 7996 . . . 4  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  -> 
( B  e.  _V  ->  A  ~<_  B ) )
507, 49mpd 15 . . 3  |-  ( (
ph  /\  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )  ->  A  ~<_  B )
513, 50mtand 691 . 2  |-  ( ph  ->  -.  A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
52 ancom 466 . . . . . . 7  |-  ( ( -.  x  =  y  /\  C  =  D )  <->  ( C  =  D  /\  -.  x  =  y ) )
53 df-ne 2795 . . . . . . . 8  |-  ( x  =/=  y  <->  -.  x  =  y )
5453anbi1i 731 . . . . . . 7  |-  ( ( x  =/=  y  /\  C  =  D )  <->  ( -.  x  =  y  /\  C  =  D ) )
55 pm4.61 442 . . . . . . 7  |-  ( -.  ( C  =  D  ->  x  =  y )  <->  ( C  =  D  /\  -.  x  =  y ) )
5652, 54, 553bitr4i 292 . . . . . 6  |-  ( ( x  =/=  y  /\  C  =  D )  <->  -.  ( C  =  D  ->  x  =  y ) )
5756rexbii 3041 . . . . 5  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  E. y  e.  A  -.  ( C  =  D  ->  x  =  y ) )
58 rexnal 2995 . . . . 5  |-  ( E. y  e.  A  -.  ( C  =  D  ->  x  =  y )  <->  -.  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
5957, 58bitri 264 . . . 4  |-  ( E. y  e.  A  ( x  =/=  y  /\  C  =  D )  <->  -. 
A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6059rexbii 3041 . . 3  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )
)
61 rexnal 2995 . . 3  |-  ( E. x  e.  A  -.  A. y  e.  A  ( C  =  D  ->  x  =  y )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6260, 61bitri 264 . 2  |-  ( E. x  e.  A  E. y  e.  A  (
x  =/=  y  /\  C  =  D )  <->  -. 
A. x  e.  A  A. y  e.  A  ( C  =  D  ->  x  =  y ) )
6351, 62sylibr 224 1  |-  ( ph  ->  E. x  e.  A  E. y  e.  A  ( x  =/=  y  /\  C  =  D
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   [_csb 3533   class class class wbr 4653    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  fphpdo  37381  pellex  37399
  Copyright terms: Public domain W3C validator