MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trclfvcotrg Structured version   Visualization version   Unicode version

Theorem trclfvcotrg 13757
Description: The value of the transitive closure of a relation is always a transitive relation. (Contributed by RP, 8-May-2020.)
Assertion
Ref Expression
trclfvcotrg  |-  ( ( t+ `  R
)  o.  ( t+ `  R ) )  C_  ( t+ `  R )

Proof of Theorem trclfvcotrg
StepHypRef Expression
1 trclfvcotr 13750 . 2  |-  ( R  e.  _V  ->  (
( t+ `  R )  o.  (
t+ `  R
) )  C_  (
t+ `  R
) )
2 fvprc 6185 . . 3  |-  ( -.  R  e.  _V  ->  ( t+ `  R
)  =  (/) )
3 0trrel 13720 . . . . 5  |-  ( (/)  o.  (/) )  C_  (/)
43a1i 11 . . . 4  |-  ( ( t+ `  R
)  =  (/)  ->  ( (/) 
o.  (/) )  C_  (/) )
5 id 22 . . . . 5  |-  ( ( t+ `  R
)  =  (/)  ->  (
t+ `  R
)  =  (/) )
65, 5coeq12d 5286 . . . 4  |-  ( ( t+ `  R
)  =  (/)  ->  (
( t+ `  R )  o.  (
t+ `  R
) )  =  (
(/)  o.  (/) ) )
74, 6, 53sstr4d 3648 . . 3  |-  ( ( t+ `  R
)  =  (/)  ->  (
( t+ `  R )  o.  (
t+ `  R
) )  C_  (
t+ `  R
) )
82, 7syl 17 . 2  |-  ( -.  R  e.  _V  ->  ( ( t+ `  R )  o.  (
t+ `  R
) )  C_  (
t+ `  R
) )
91, 8pm2.61i 176 1  |-  ( ( t+ `  R
)  o.  ( t+ `  R ) )  C_  ( t+ `  R )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915    o. ccom 5118   ` cfv 5888   t+ctcl 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-trcl 13726
This theorem is referenced by:  cotrcltrcl  38017  brtrclfv2  38019  frege96d  38041  frege97d  38044  frege98d  38045  frege109d  38049  frege131d  38056
  Copyright terms: Public domain W3C validator