MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaundi Structured version   Visualization version   Unicode version

Theorem imaundi 5545
Description: Distributive law for image over union. Theorem 35 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
imaundi  |-  ( A
" ( B  u.  C ) )  =  ( ( A " B )  u.  ( A " C ) )

Proof of Theorem imaundi
StepHypRef Expression
1 resundi 5410 . . . 4  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
21rneqi 5352 . . 3  |-  ran  ( A  |`  ( B  u.  C ) )  =  ran  ( ( A  |`  B )  u.  ( A  |`  C ) )
3 rnun 5541 . . 3  |-  ran  (
( A  |`  B )  u.  ( A  |`  C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
42, 3eqtri 2644 . 2  |-  ran  ( A  |`  ( B  u.  C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
5 df-ima 5127 . 2  |-  ( A
" ( B  u.  C ) )  =  ran  ( A  |`  ( B  u.  C
) )
6 df-ima 5127 . . 3  |-  ( A
" B )  =  ran  ( A  |`  B )
7 df-ima 5127 . . 3  |-  ( A
" C )  =  ran  ( A  |`  C )
86, 7uneq12i 3765 . 2  |-  ( ( A " B )  u.  ( A " C ) )  =  ( ran  ( A  |`  B )  u.  ran  ( A  |`  C ) )
94, 5, 83eqtr4i 2654 1  |-  ( A
" ( B  u.  C ) )  =  ( ( A " B )  u.  ( A " C ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    u. cun 3572   ran crn 5115    |` cres 5116   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  fnimapr  6262  domunfican  8233  fiint  8237  fodomfi  8239  marypha1lem  8339  resunimafz0  13229  dprd2da  18441  dmdprdsplit2lem  18444  uniioombllem3  23353  mbfimaicc  23400  plyeq0  23967  ffsrn  29504  noetalem4  31866  imadifss  33384  poimirlem1  33410  poimirlem2  33411  poimirlem3  33412  poimirlem4  33413  poimirlem6  33415  poimirlem7  33416  poimirlem11  33420  poimirlem12  33421  poimirlem15  33424  poimirlem16  33425  poimirlem17  33426  poimirlem19  33428  poimirlem20  33429  poimirlem23  33432  poimirlem24  33433  poimirlem25  33434  poimirlem29  33438  poimirlem31  33440  mbfposadd  33457  itg2addnclem2  33462  ftc1anclem1  33485  ftc1anclem5  33489  brtrclfv2  38019  frege77d  38038  frege109d  38049  frege131d  38056  dffrege76  38233  icccncfext  40100
  Copyright terms: Public domain W3C validator