| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ptuncnv | Structured version Visualization version Unicode version | ||
| Description: Exhibit the converse
function of the map |
| Ref | Expression |
|---|---|
| ptunhmeo.x |
|
| ptunhmeo.y |
|
| ptunhmeo.j |
|
| ptunhmeo.k |
|
| ptunhmeo.l |
|
| ptunhmeo.g |
|
| ptunhmeo.c |
|
| ptunhmeo.f |
|
| ptunhmeo.u |
|
| ptunhmeo.i |
|
| Ref | Expression |
|---|---|
| ptuncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ptunhmeo.g |
. . . 4
| |
| 2 | vex 3203 |
. . . . . . 7
| |
| 3 | vex 3203 |
. . . . . . 7
| |
| 4 | 2, 3 | op1std 7178 |
. . . . . 6
|
| 5 | 2, 3 | op2ndd 7179 |
. . . . . 6
|
| 6 | 4, 5 | uneq12d 3768 |
. . . . 5
|
| 7 | 6 | mpt2mpt 6752 |
. . . 4
|
| 8 | 1, 7 | eqtr4i 2647 |
. . 3
|
| 9 | xp1st 7198 |
. . . . . . 7
| |
| 10 | 9 | adantl 482 |
. . . . . 6
|
| 11 | ixpeq2 7922 |
. . . . . . . . . 10
| |
| 12 | fvres 6207 |
. . . . . . . . . . 11
| |
| 13 | 12 | unieqd 4446 |
. . . . . . . . . 10
|
| 14 | 11, 13 | mprg 2926 |
. . . . . . . . 9
|
| 15 | ptunhmeo.c |
. . . . . . . . . . 11
| |
| 16 | ssun1 3776 |
. . . . . . . . . . . 12
| |
| 17 | ptunhmeo.u |
. . . . . . . . . . . 12
| |
| 18 | 16, 17 | syl5sseqr 3654 |
. . . . . . . . . . 11
|
| 19 | 15, 18 | ssexd 4805 |
. . . . . . . . . 10
|
| 20 | ptunhmeo.f |
. . . . . . . . . . 11
| |
| 21 | 20, 18 | fssresd 6071 |
. . . . . . . . . 10
|
| 22 | ptunhmeo.k |
. . . . . . . . . . 11
| |
| 23 | 22 | ptuni 21397 |
. . . . . . . . . 10
|
| 24 | 19, 21, 23 | syl2anc 693 |
. . . . . . . . 9
|
| 25 | 14, 24 | syl5eqr 2670 |
. . . . . . . 8
|
| 26 | ptunhmeo.x |
. . . . . . . 8
| |
| 27 | 25, 26 | syl6eqr 2674 |
. . . . . . 7
|
| 28 | 27 | adantr 481 |
. . . . . 6
|
| 29 | 10, 28 | eleqtrrd 2704 |
. . . . 5
|
| 30 | xp2nd 7199 |
. . . . . . 7
| |
| 31 | 30 | adantl 482 |
. . . . . 6
|
| 32 | 17 | eqcomd 2628 |
. . . . . . . . . 10
|
| 33 | ptunhmeo.i |
. . . . . . . . . . 11
| |
| 34 | uneqdifeq 4057 |
. . . . . . . . . . 11
| |
| 35 | 18, 33, 34 | syl2anc 693 |
. . . . . . . . . 10
|
| 36 | 32, 35 | mpbid 222 |
. . . . . . . . 9
|
| 37 | 36 | ixpeq1d 7920 |
. . . . . . . 8
|
| 38 | ixpeq2 7922 |
. . . . . . . . . . 11
| |
| 39 | fvres 6207 |
. . . . . . . . . . . 12
| |
| 40 | 39 | unieqd 4446 |
. . . . . . . . . . 11
|
| 41 | 38, 40 | mprg 2926 |
. . . . . . . . . 10
|
| 42 | ssun2 3777 |
. . . . . . . . . . . . 13
| |
| 43 | 42, 17 | syl5sseqr 3654 |
. . . . . . . . . . . 12
|
| 44 | 15, 43 | ssexd 4805 |
. . . . . . . . . . 11
|
| 45 | 20, 43 | fssresd 6071 |
. . . . . . . . . . 11
|
| 46 | ptunhmeo.l |
. . . . . . . . . . . 12
| |
| 47 | 46 | ptuni 21397 |
. . . . . . . . . . 11
|
| 48 | 44, 45, 47 | syl2anc 693 |
. . . . . . . . . 10
|
| 49 | 41, 48 | syl5eqr 2670 |
. . . . . . . . 9
|
| 50 | ptunhmeo.y |
. . . . . . . . 9
| |
| 51 | 49, 50 | syl6eqr 2674 |
. . . . . . . 8
|
| 52 | 37, 51 | eqtrd 2656 |
. . . . . . 7
|
| 53 | 52 | adantr 481 |
. . . . . 6
|
| 54 | 31, 53 | eleqtrrd 2704 |
. . . . 5
|
| 55 | 18 | adantr 481 |
. . . . 5
|
| 56 | undifixp 7944 |
. . . . 5
| |
| 57 | 29, 54, 55, 56 | syl3anc 1326 |
. . . 4
|
| 58 | ptunhmeo.j |
. . . . . . 7
| |
| 59 | 58 | ptuni 21397 |
. . . . . 6
|
| 60 | 15, 20, 59 | syl2anc 693 |
. . . . 5
|
| 61 | 60 | adantr 481 |
. . . 4
|
| 62 | 57, 61 | eleqtrd 2703 |
. . 3
|
| 63 | 18 | adantr 481 |
. . . . . 6
|
| 64 | 60 | eleq2d 2687 |
. . . . . . 7
|
| 65 | 64 | biimpar 502 |
. . . . . 6
|
| 66 | resixp 7943 |
. . . . . 6
| |
| 67 | 63, 65, 66 | syl2anc 693 |
. . . . 5
|
| 68 | 27 | adantr 481 |
. . . . 5
|
| 69 | 67, 68 | eleqtrd 2703 |
. . . 4
|
| 70 | 43 | adantr 481 |
. . . . . 6
|
| 71 | resixp 7943 |
. . . . . 6
| |
| 72 | 70, 65, 71 | syl2anc 693 |
. . . . 5
|
| 73 | 51 | adantr 481 |
. . . . 5
|
| 74 | 72, 73 | eleqtrd 2703 |
. . . 4
|
| 75 | opelxpi 5148 |
. . . 4
| |
| 76 | 69, 74, 75 | syl2anc 693 |
. . 3
|
| 77 | eqop 7208 |
. . . . 5
| |
| 78 | 77 | ad2antrl 764 |
. . . 4
|
| 79 | 65 | adantrl 752 |
. . . . . . . . 9
|
| 80 | ixpfn 7914 |
. . . . . . . . 9
| |
| 81 | fnresdm 6000 |
. . . . . . . . 9
| |
| 82 | 79, 80, 81 | 3syl 18 |
. . . . . . . 8
|
| 83 | 17 | reseq2d 5396 |
. . . . . . . . 9
|
| 84 | 83 | adantr 481 |
. . . . . . . 8
|
| 85 | 82, 84 | eqtr3d 2658 |
. . . . . . 7
|
| 86 | resundi 5410 |
. . . . . . 7
| |
| 87 | 85, 86 | syl6eq 2672 |
. . . . . 6
|
| 88 | uneq12 3762 |
. . . . . . 7
| |
| 89 | 88 | eqeq2d 2632 |
. . . . . 6
|
| 90 | 87, 89 | syl5ibrcom 237 |
. . . . 5
|
| 91 | ixpfn 7914 |
. . . . . . . . . . . 12
| |
| 92 | 29, 91 | syl 17 |
. . . . . . . . . . 11
|
| 93 | 92 | adantrr 753 |
. . . . . . . . . 10
|
| 94 | dffn2 6047 |
. . . . . . . . . 10
| |
| 95 | 93, 94 | sylib 208 |
. . . . . . . . 9
|
| 96 | 51 | adantr 481 |
. . . . . . . . . . . . 13
|
| 97 | 31, 96 | eleqtrrd 2704 |
. . . . . . . . . . . 12
|
| 98 | ixpfn 7914 |
. . . . . . . . . . . 12
| |
| 99 | 97, 98 | syl 17 |
. . . . . . . . . . 11
|
| 100 | 99 | adantrr 753 |
. . . . . . . . . 10
|
| 101 | dffn2 6047 |
. . . . . . . . . 10
| |
| 102 | 100, 101 | sylib 208 |
. . . . . . . . 9
|
| 103 | res0 5400 |
. . . . . . . . . . 11
| |
| 104 | res0 5400 |
. . . . . . . . . . 11
| |
| 105 | 103, 104 | eqtr4i 2647 |
. . . . . . . . . 10
|
| 106 | 33 | adantr 481 |
. . . . . . . . . . 11
|
| 107 | 106 | reseq2d 5396 |
. . . . . . . . . 10
|
| 108 | 106 | reseq2d 5396 |
. . . . . . . . . 10
|
| 109 | 105, 107, 108 | 3eqtr4a 2682 |
. . . . . . . . 9
|
| 110 | fresaunres1 6077 |
. . . . . . . . 9
| |
| 111 | 95, 102, 109, 110 | syl3anc 1326 |
. . . . . . . 8
|
| 112 | 111 | eqcomd 2628 |
. . . . . . 7
|
| 113 | fresaunres2 6076 |
. . . . . . . . 9
| |
| 114 | 95, 102, 109, 113 | syl3anc 1326 |
. . . . . . . 8
|
| 115 | 114 | eqcomd 2628 |
. . . . . . 7
|
| 116 | 112, 115 | jca 554 |
. . . . . 6
|
| 117 | reseq1 5390 |
. . . . . . . 8
| |
| 118 | 117 | eqeq2d 2632 |
. . . . . . 7
|
| 119 | reseq1 5390 |
. . . . . . . 8
| |
| 120 | 119 | eqeq2d 2632 |
. . . . . . 7
|
| 121 | 118, 120 | anbi12d 747 |
. . . . . 6
|
| 122 | 116, 121 | syl5ibrcom 237 |
. . . . 5
|
| 123 | 90, 122 | impbid 202 |
. . . 4
|
| 124 | 78, 123 | bitrd 268 |
. . 3
|
| 125 | 8, 62, 76, 124 | f1ocnv2d 6886 |
. 2
|
| 126 | 125 | simprd 479 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-ixp 7909 df-en 7956 df-fin 7959 df-fi 8317 df-topgen 16104 df-pt 16105 df-top 20699 df-bases 20750 |
| This theorem is referenced by: ptunhmeo 21611 |
| Copyright terms: Public domain | W3C validator |