| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mapunen | Structured version Visualization version Unicode version | ||
| Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| mapunen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 6678 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | ovex 6678 |
. . . 4
| |
| 4 | ovex 6678 |
. . . 4
| |
| 5 | 3, 4 | xpex 6962 |
. . 3
|
| 6 | 5 | a1i 11 |
. 2
|
| 7 | elmapi 7879 |
. . . . 5
| |
| 8 | ssun1 3776 |
. . . . 5
| |
| 9 | fssres 6070 |
. . . . 5
| |
| 10 | 7, 8, 9 | sylancl 694 |
. . . 4
|
| 11 | ssun2 3777 |
. . . . 5
| |
| 12 | fssres 6070 |
. . . . 5
| |
| 13 | 7, 11, 12 | sylancl 694 |
. . . 4
|
| 14 | 10, 13 | jca 554 |
. . 3
|
| 15 | opelxp 5146 |
. . . 4
| |
| 16 | simpl3 1066 |
. . . . . 6
| |
| 17 | simpl1 1064 |
. . . . . 6
| |
| 18 | 16, 17 | elmapd 7871 |
. . . . 5
|
| 19 | simpl2 1065 |
. . . . . 6
| |
| 20 | 16, 19 | elmapd 7871 |
. . . . 5
|
| 21 | 18, 20 | anbi12d 747 |
. . . 4
|
| 22 | 15, 21 | syl5bb 272 |
. . 3
|
| 23 | 14, 22 | syl5ibr 236 |
. 2
|
| 24 | xp1st 7198 |
. . . . . . 7
| |
| 25 | 24 | adantl 482 |
. . . . . 6
|
| 26 | elmapi 7879 |
. . . . . 6
| |
| 27 | 25, 26 | syl 17 |
. . . . 5
|
| 28 | xp2nd 7199 |
. . . . . . 7
| |
| 29 | 28 | adantl 482 |
. . . . . 6
|
| 30 | elmapi 7879 |
. . . . . 6
| |
| 31 | 29, 30 | syl 17 |
. . . . 5
|
| 32 | simplr 792 |
. . . . 5
| |
| 33 | fun2 6067 |
. . . . 5
| |
| 34 | 27, 31, 32, 33 | syl21anc 1325 |
. . . 4
|
| 35 | 34 | ex 450 |
. . 3
|
| 36 | unexg 6959 |
. . . . 5
| |
| 37 | 17, 19, 36 | syl2anc 693 |
. . . 4
|
| 38 | 16, 37 | elmapd 7871 |
. . 3
|
| 39 | 35, 38 | sylibrd 249 |
. 2
|
| 40 | 1st2nd2 7205 |
. . . . . . 7
| |
| 41 | 40 | ad2antll 765 |
. . . . . 6
|
| 42 | 27 | adantrl 752 |
. . . . . . . 8
|
| 43 | 31 | adantrl 752 |
. . . . . . . 8
|
| 44 | res0 5400 |
. . . . . . . . . 10
| |
| 45 | res0 5400 |
. . . . . . . . . 10
| |
| 46 | 44, 45 | eqtr4i 2647 |
. . . . . . . . 9
|
| 47 | simplr 792 |
. . . . . . . . . 10
| |
| 48 | 47 | reseq2d 5396 |
. . . . . . . . 9
|
| 49 | 47 | reseq2d 5396 |
. . . . . . . . 9
|
| 50 | 46, 48, 49 | 3eqtr4a 2682 |
. . . . . . . 8
|
| 51 | fresaunres1 6077 |
. . . . . . . 8
| |
| 52 | 42, 43, 50, 51 | syl3anc 1326 |
. . . . . . 7
|
| 53 | fresaunres2 6076 |
. . . . . . . 8
| |
| 54 | 42, 43, 50, 53 | syl3anc 1326 |
. . . . . . 7
|
| 55 | 52, 54 | opeq12d 4410 |
. . . . . 6
|
| 56 | 41, 55 | eqtr4d 2659 |
. . . . 5
|
| 57 | reseq1 5390 |
. . . . . . 7
| |
| 58 | reseq1 5390 |
. . . . . . 7
| |
| 59 | 57, 58 | opeq12d 4410 |
. . . . . 6
|
| 60 | 59 | eqeq2d 2632 |
. . . . 5
|
| 61 | 56, 60 | syl5ibrcom 237 |
. . . 4
|
| 62 | ffn 6045 |
. . . . . . . 8
| |
| 63 | fnresdm 6000 |
. . . . . . . 8
| |
| 64 | 7, 62, 63 | 3syl 18 |
. . . . . . 7
|
| 65 | 64 | ad2antrl 764 |
. . . . . 6
|
| 66 | 65 | eqcomd 2628 |
. . . . 5
|
| 67 | vex 3203 |
. . . . . . . . . 10
| |
| 68 | 67 | resex 5443 |
. . . . . . . . 9
|
| 69 | 67 | resex 5443 |
. . . . . . . . 9
|
| 70 | 68, 69 | op1std 7178 |
. . . . . . . 8
|
| 71 | 68, 69 | op2ndd 7179 |
. . . . . . . 8
|
| 72 | 70, 71 | uneq12d 3768 |
. . . . . . 7
|
| 73 | resundi 5410 |
. . . . . . 7
| |
| 74 | 72, 73 | syl6eqr 2674 |
. . . . . 6
|
| 75 | 74 | eqeq2d 2632 |
. . . . 5
|
| 76 | 66, 75 | syl5ibrcom 237 |
. . . 4
|
| 77 | 61, 76 | impbid 202 |
. . 3
|
| 78 | 77 | ex 450 |
. 2
|
| 79 | 2, 6, 23, 39, 78 | en3d 7992 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-en 7956 |
| This theorem is referenced by: map2xp 8130 mapdom2 8131 mapcdaen 9006 ackbij1lem5 9046 hashmap 13222 mpct 39393 |
| Copyright terms: Public domain | W3C validator |