MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthinv Structured version   Visualization version   Unicode version

Theorem fthinv 16586
Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b  |-  B  =  ( Base `  C
)
fthsect.h  |-  H  =  ( Hom  `  C
)
fthsect.f  |-  ( ph  ->  F ( C Faith  D
) G )
fthsect.x  |-  ( ph  ->  X  e.  B )
fthsect.y  |-  ( ph  ->  Y  e.  B )
fthsect.m  |-  ( ph  ->  M  e.  ( X H Y ) )
fthsect.n  |-  ( ph  ->  N  e.  ( Y H X ) )
fthinv.s  |-  I  =  (Inv `  C )
fthinv.t  |-  J  =  (Inv `  D )
Assertion
Ref Expression
fthinv  |-  ( ph  ->  ( M ( X I Y ) N  <-> 
( ( X G Y ) `  M
) ( ( F `
 X ) J ( F `  Y
) ) ( ( Y G X ) `
 N ) ) )

Proof of Theorem fthinv
StepHypRef Expression
1 fthsect.b . . . 4  |-  B  =  ( Base `  C
)
2 fthsect.h . . . 4  |-  H  =  ( Hom  `  C
)
3 fthsect.f . . . 4  |-  ( ph  ->  F ( C Faith  D
) G )
4 fthsect.x . . . 4  |-  ( ph  ->  X  e.  B )
5 fthsect.y . . . 4  |-  ( ph  ->  Y  e.  B )
6 fthsect.m . . . 4  |-  ( ph  ->  M  e.  ( X H Y ) )
7 fthsect.n . . . 4  |-  ( ph  ->  N  e.  ( Y H X ) )
8 eqid 2622 . . . 4  |-  (Sect `  C )  =  (Sect `  C )
9 eqid 2622 . . . 4  |-  (Sect `  D )  =  (Sect `  D )
101, 2, 3, 4, 5, 6, 7, 8, 9fthsect 16585 . . 3  |-  ( ph  ->  ( M ( X (Sect `  C ) Y ) N  <->  ( ( X G Y ) `  M ) ( ( F `  X ) (Sect `  D )
( F `  Y
) ) ( ( Y G X ) `
 N ) ) )
111, 2, 3, 5, 4, 7, 6, 8, 9fthsect 16585 . . 3  |-  ( ph  ->  ( N ( Y (Sect `  C ) X ) M  <->  ( ( Y G X ) `  N ) ( ( F `  Y ) (Sect `  D )
( F `  X
) ) ( ( X G Y ) `
 M ) ) )
1210, 11anbi12d 747 . 2  |-  ( ph  ->  ( ( M ( X (Sect `  C
) Y ) N  /\  N ( Y (Sect `  C ) X ) M )  <-> 
( ( ( X G Y ) `  M ) ( ( F `  X ) (Sect `  D )
( F `  Y
) ) ( ( Y G X ) `
 N )  /\  ( ( Y G X ) `  N
) ( ( F `
 Y ) (Sect `  D ) ( F `
 X ) ) ( ( X G Y ) `  M
) ) ) )
13 fthinv.s . . 3  |-  I  =  (Inv `  C )
14 fthfunc 16567 . . . . . . . 8  |-  ( C Faith 
D )  C_  ( C  Func  D )
1514ssbri 4697 . . . . . . 7  |-  ( F ( C Faith  D ) G  ->  F ( C  Func  D ) G )
163, 15syl 17 . . . . . 6  |-  ( ph  ->  F ( C  Func  D ) G )
17 df-br 4654 . . . . . 6  |-  ( F ( C  Func  D
) G  <->  <. F ,  G >.  e.  ( C 
Func  D ) )
1816, 17sylib 208 . . . . 5  |-  ( ph  -> 
<. F ,  G >.  e.  ( C  Func  D
) )
19 funcrcl 16523 . . . . 5  |-  ( <. F ,  G >.  e.  ( C  Func  D
)  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
2018, 19syl 17 . . . 4  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
2120simpld 475 . . 3  |-  ( ph  ->  C  e.  Cat )
221, 13, 21, 4, 5, 8isinv 16420 . 2  |-  ( ph  ->  ( M ( X I Y ) N  <-> 
( M ( X (Sect `  C ) Y ) N  /\  N ( Y (Sect `  C ) X ) M ) ) )
23 eqid 2622 . . 3  |-  ( Base `  D )  =  (
Base `  D )
24 fthinv.t . . 3  |-  J  =  (Inv `  D )
2520simprd 479 . . 3  |-  ( ph  ->  D  e.  Cat )
261, 23, 16funcf1 16526 . . . 4  |-  ( ph  ->  F : B --> ( Base `  D ) )
2726, 4ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  D ) )
2826, 5ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  Y
)  e.  ( Base `  D ) )
2923, 24, 25, 27, 28, 9isinv 16420 . 2  |-  ( ph  ->  ( ( ( X G Y ) `  M ) ( ( F `  X ) J ( F `  Y ) ) ( ( Y G X ) `  N )  <-> 
( ( ( X G Y ) `  M ) ( ( F `  X ) (Sect `  D )
( F `  Y
) ) ( ( Y G X ) `
 N )  /\  ( ( Y G X ) `  N
) ( ( F `
 Y ) (Sect `  D ) ( F `
 X ) ) ( ( X G Y ) `  M
) ) ) )
3012, 22, 293bitr4d 300 1  |-  ( ph  ->  ( M ( X I Y ) N  <-> 
( ( X G Y ) `  M
) ( ( F `
 X ) J ( F `  Y
) ) ( ( Y G X ) `
 N ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952   Catccat 16325  Sectcsect 16404  Invcinv 16405    Func cfunc 16514   Faith cfth 16563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-func 16518  df-fth 16565
This theorem is referenced by:  ffthiso  16589
  Copyright terms: Public domain W3C validator