MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinv Structured version   Visualization version   Unicode version

Theorem isinv 16420
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b  |-  B  =  ( Base `  C
)
invfval.n  |-  N  =  (Inv `  C )
invfval.c  |-  ( ph  ->  C  e.  Cat )
invfval.x  |-  ( ph  ->  X  e.  B )
invfval.y  |-  ( ph  ->  Y  e.  B )
invfval.s  |-  S  =  (Sect `  C )
Assertion
Ref Expression
isinv  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F ( X S Y ) G  /\  G ( Y S X ) F ) ) )

Proof of Theorem isinv
StepHypRef Expression
1 invfval.b . . . . 5  |-  B  =  ( Base `  C
)
2 invfval.n . . . . 5  |-  N  =  (Inv `  C )
3 invfval.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
4 invfval.x . . . . 5  |-  ( ph  ->  X  e.  B )
5 invfval.y . . . . 5  |-  ( ph  ->  Y  e.  B )
6 invfval.s . . . . 5  |-  S  =  (Sect `  C )
71, 2, 3, 4, 5, 6invfval 16419 . . . 4  |-  ( ph  ->  ( X N Y )  =  ( ( X S Y )  i^i  `' ( Y S X ) ) )
87breqd 4664 . . 3  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
F ( ( X S Y )  i^i  `' ( Y S X ) ) G ) )
9 brin 4704 . . 3  |-  ( F ( ( X S Y )  i^i  `' ( Y S X ) ) G  <->  ( F
( X S Y ) G  /\  F `' ( Y S X ) G ) )
108, 9syl6bb 276 . 2  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F ( X S Y ) G  /\  F `' ( Y S X ) G ) ) )
11 eqid 2622 . . . . . 6  |-  ( Hom  `  C )  =  ( Hom  `  C )
12 eqid 2622 . . . . . 6  |-  (comp `  C )  =  (comp `  C )
13 eqid 2622 . . . . . 6  |-  ( Id
`  C )  =  ( Id `  C
)
141, 11, 12, 13, 6, 3, 5, 4sectss 16412 . . . . 5  |-  ( ph  ->  ( Y S X )  C_  ( ( Y ( Hom  `  C
) X )  X.  ( X ( Hom  `  C ) Y ) ) )
15 relxp 5227 . . . . 5  |-  Rel  (
( Y ( Hom  `  C ) X )  X.  ( X ( Hom  `  C ) Y ) )
16 relss 5206 . . . . 5  |-  ( ( Y S X ) 
C_  ( ( Y ( Hom  `  C
) X )  X.  ( X ( Hom  `  C ) Y ) )  ->  ( Rel  ( ( Y ( Hom  `  C ) X )  X.  ( X ( Hom  `  C
) Y ) )  ->  Rel  ( Y S X ) ) )
1714, 15, 16mpisyl 21 . . . 4  |-  ( ph  ->  Rel  ( Y S X ) )
18 relbrcnvg 5504 . . . 4  |-  ( Rel  ( Y S X )  ->  ( F `' ( Y S X ) G  <->  G ( Y S X ) F ) )
1917, 18syl 17 . . 3  |-  ( ph  ->  ( F `' ( Y S X ) G  <->  G ( Y S X ) F ) )
2019anbi2d 740 . 2  |-  ( ph  ->  ( ( F ( X S Y ) G  /\  F `' ( Y S X ) G )  <->  ( F
( X S Y ) G  /\  G
( Y S X ) F ) ) )
2110, 20bitrd 268 1  |-  ( ph  ->  ( F ( X N Y ) G  <-> 
( F ( X S Y ) G  /\  G ( Y S X ) F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   class class class wbr 4653    X. cxp 5112   `'ccnv 5113   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404  Invcinv 16405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-sect 16407  df-inv 16408
This theorem is referenced by:  invsym  16422  invfun  16424  invco  16431  inveq  16434  monsect  16443  invid  16447  invcoisoid  16452  isocoinvid  16453  cicref  16461  funcinv  16533  fthinv  16586  fucinv  16633  invfuc  16634  2initoinv  16660  2termoinv  16667  setcinv  16740  catcisolem  16756  catciso  16757  rngcinv  41981  rngcinvALTV  41993  ringcinv  42032  ringcinvALTV  42056
  Copyright terms: Public domain W3C validator