| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fthsect | Structured version Visualization version Unicode version | ||
| Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fthsect.b |
|
| fthsect.h |
|
| fthsect.f |
|
| fthsect.x |
|
| fthsect.y |
|
| fthsect.m |
|
| fthsect.n |
|
| fthsect.s |
|
| fthsect.t |
|
| Ref | Expression |
|---|---|
| fthsect |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthsect.b |
. . . 4
| |
| 2 | fthsect.h |
. . . 4
| |
| 3 | eqid 2622 |
. . . 4
| |
| 4 | fthsect.f |
. . . 4
| |
| 5 | fthsect.x |
. . . 4
| |
| 6 | eqid 2622 |
. . . . 5
| |
| 7 | fthfunc 16567 |
. . . . . . . . . 10
| |
| 8 | 7 | ssbri 4697 |
. . . . . . . . 9
|
| 9 | 4, 8 | syl 17 |
. . . . . . . 8
|
| 10 | df-br 4654 |
. . . . . . . 8
| |
| 11 | 9, 10 | sylib 208 |
. . . . . . 7
|
| 12 | funcrcl 16523 |
. . . . . . 7
| |
| 13 | 11, 12 | syl 17 |
. . . . . 6
|
| 14 | 13 | simpld 475 |
. . . . 5
|
| 15 | fthsect.y |
. . . . 5
| |
| 16 | fthsect.m |
. . . . 5
| |
| 17 | fthsect.n |
. . . . 5
| |
| 18 | 1, 2, 6, 14, 5, 15, 5, 16, 17 | catcocl 16346 |
. . . 4
|
| 19 | eqid 2622 |
. . . . 5
| |
| 20 | 1, 2, 19, 14, 5 | catidcl 16343 |
. . . 4
|
| 21 | 1, 2, 3, 4, 5, 5, 18, 20 | fthi 16578 |
. . 3
|
| 22 | eqid 2622 |
. . . . 5
| |
| 23 | 1, 2, 6, 22, 9, 5, 15, 5, 16, 17 | funcco 16531 |
. . . 4
|
| 24 | eqid 2622 |
. . . . 5
| |
| 25 | 1, 19, 24, 9, 5 | funcid 16530 |
. . . 4
|
| 26 | 23, 25 | eqeq12d 2637 |
. . 3
|
| 27 | 21, 26 | bitr3d 270 |
. 2
|
| 28 | fthsect.s |
. . 3
| |
| 29 | 1, 2, 6, 19, 28, 14, 5, 15, 16, 17 | issect2 16414 |
. 2
|
| 30 | eqid 2622 |
. . 3
| |
| 31 | fthsect.t |
. . 3
| |
| 32 | 13 | simprd 479 |
. . 3
|
| 33 | 1, 30, 9 | funcf1 16526 |
. . . 4
|
| 34 | 33, 5 | ffvelrnd 6360 |
. . 3
|
| 35 | 33, 15 | ffvelrnd 6360 |
. . 3
|
| 36 | 1, 2, 3, 9, 5, 15 | funcf2 16528 |
. . . 4
|
| 37 | 36, 16 | ffvelrnd 6360 |
. . 3
|
| 38 | 1, 2, 3, 9, 15, 5 | funcf2 16528 |
. . . 4
|
| 39 | 38, 17 | ffvelrnd 6360 |
. . 3
|
| 40 | 30, 3, 22, 24, 31, 32, 34, 35, 37, 39 | issect2 16414 |
. 2
|
| 41 | 27, 29, 40 | 3bitr4d 300 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-ixp 7909 df-cat 16329 df-cid 16330 df-sect 16407 df-func 16518 df-fth 16565 |
| This theorem is referenced by: fthinv 16586 |
| Copyright terms: Public domain | W3C validator |