MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fucpropd Structured version   Visualization version   Unicode version

Theorem fucpropd 16637
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same functor categories. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
fucpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
fucpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
fucpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
fucpropd.a  |-  ( ph  ->  A  e.  Cat )
fucpropd.b  |-  ( ph  ->  B  e.  Cat )
fucpropd.c  |-  ( ph  ->  C  e.  Cat )
fucpropd.d  |-  ( ph  ->  D  e.  Cat )
Assertion
Ref Expression
fucpropd  |-  ( ph  ->  ( A FuncCat  C )  =  ( B FuncCat  D
) )

Proof of Theorem fucpropd
Dummy variables  a 
b  f  g  h  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . . 5  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
2 fucpropd.2 . . . . 5  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
3 fucpropd.3 . . . . 5  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
4 fucpropd.4 . . . . 5  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
5 fucpropd.a . . . . 5  |-  ( ph  ->  A  e.  Cat )
6 fucpropd.b . . . . 5  |-  ( ph  ->  B  e.  Cat )
7 fucpropd.c . . . . 5  |-  ( ph  ->  C  e.  Cat )
8 fucpropd.d . . . . 5  |-  ( ph  ->  D  e.  Cat )
91, 2, 3, 4, 5, 6, 7, 8funcpropd 16560 . . . 4  |-  ( ph  ->  ( A  Func  C
)  =  ( B 
Func  D ) )
109opeq2d 4409 . . 3  |-  ( ph  -> 
<. ( Base `  ndx ) ,  ( A  Func  C ) >.  =  <. (
Base `  ndx ) ,  ( B  Func  D
) >. )
111, 2, 3, 4, 5, 6, 7, 8natpropd 16636 . . . 4  |-  ( ph  ->  ( A Nat  C )  =  ( B Nat  D
) )
1211opeq2d 4409 . . 3  |-  ( ph  -> 
<. ( Hom  `  ndx ) ,  ( A Nat  C ) >.  =  <. ( Hom  `  ndx ) ,  ( B Nat  D )
>. )
139sqxpeqd 5141 . . . . 5  |-  ( ph  ->  ( ( A  Func  C )  X.  ( A 
Func  C ) )  =  ( ( B  Func  D )  X.  ( B 
Func  D ) ) )
149adantr 481 . . . . 5  |-  ( (
ph  /\  v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) ) )  ->  ( A  Func  C )  =  ( B 
Func  D ) )
15 nfv 1843 . . . . . 6  |-  F/ f ( ph  /\  (
v  e.  ( ( A  Func  C )  X.  ( A  Func  C
) )  /\  h  e.  ( A  Func  C
) ) )
16 nfcsb1v 3549 . . . . . . 7  |-  F/_ f [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )
1716a1i 11 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  ->  F/_ f [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
18 fvexd 6203 . . . . . 6  |-  ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  ->  ( 1st `  v
)  e.  _V )
19 nfv 1843 . . . . . . . 8  |-  F/ g ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )
20 nfcsb1v 3549 . . . . . . . . 9  |-  F/_ g [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )
2120a1i 11 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  ( ( A  Func  C )  X.  ( A  Func  C
) )  /\  h  e.  ( A  Func  C
) ) )  /\  f  =  ( 1st `  v ) )  ->  F/_ g [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
22 fvexd 6203 . . . . . . . 8  |-  ( ( ( ph  /\  (
v  e.  ( ( A  Func  C )  X.  ( A  Func  C
) )  /\  h  e.  ( A  Func  C
) ) )  /\  f  =  ( 1st `  v ) )  -> 
( 2nd `  v
)  e.  _V )
2311ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  ->  ( A Nat  C )  =  ( B Nat  D ) )
2423oveqd 6667 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  ->  (
g ( A Nat  C
) h )  =  ( g ( B Nat 
D ) h ) )
2523oveqdr 6674 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  b  e.  ( g ( A Nat 
C ) h ) )  ->  ( f
( A Nat  C ) g )  =  ( f ( B Nat  D
) g ) )
261homfeqbas 16356 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
2726ad4antr 768 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( Base `  A )  =  ( Base `  B
) )
28 eqid 2622 . . . . . . . . . . . 12  |-  ( Base `  C )  =  (
Base `  C )
29 eqid 2622 . . . . . . . . . . . 12  |-  ( Hom  `  C )  =  ( Hom  `  C )
30 eqid 2622 . . . . . . . . . . . 12  |-  (comp `  C )  =  (comp `  C )
31 eqid 2622 . . . . . . . . . . . 12  |-  (comp `  D )  =  (comp `  D )
323ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
334ad5antr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  (compf `  C
)  =  (compf `  D
) )
34 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  A )  =  (
Base `  A )
35 relfunc 16522 . . . . . . . . . . . . . . 15  |-  Rel  ( A  Func  C )
36 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  f  =  ( 1st `  v
) )
37 simp-4r 807 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  (
v  e.  ( ( A  Func  C )  X.  ( A  Func  C
) )  /\  h  e.  ( A  Func  C
) ) )
3837simpld 475 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) ) )
39 xp1st 7198 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( ( A 
Func  C )  X.  ( A  Func  C ) )  ->  ( 1st `  v
)  e.  ( A 
Func  C ) )
4038, 39syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 1st `  v )  e.  ( A  Func  C
) )
4136, 40eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  f  e.  ( A  Func  C
) )
42 1st2ndbr 7217 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( A  Func  C )  /\  f  e.  ( A  Func  C
) )  ->  ( 1st `  f ) ( A  Func  C )
( 2nd `  f
) )
4335, 41, 42sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 1st `  f ) ( A  Func  C )
( 2nd `  f
) )
4434, 28, 43funcf1 16526 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 1st `  f ) : ( Base `  A
) --> ( Base `  C
) )
4544ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
( 1st `  f
) `  x )  e.  ( Base `  C
) )
46 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  g  =  ( 2nd `  v
) )
47 xp2nd 7199 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( ( A 
Func  C )  X.  ( A  Func  C ) )  ->  ( 2nd `  v
)  e.  ( A 
Func  C ) )
4838, 47syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 2nd `  v )  e.  ( A  Func  C
) )
4946, 48eqeltrd 2701 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  g  e.  ( A  Func  C
) )
50 1st2ndbr 7217 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( A  Func  C )  /\  g  e.  ( A  Func  C
) )  ->  ( 1st `  g ) ( A  Func  C )
( 2nd `  g
) )
5135, 49, 50sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 1st `  g ) ( A  Func  C )
( 2nd `  g
) )
5234, 28, 51funcf1 16526 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 1st `  g ) : ( Base `  A
) --> ( Base `  C
) )
5352ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
( 1st `  g
) `  x )  e.  ( Base `  C
) )
5437simprd 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  h  e.  ( A  Func  C
) )
55 1st2ndbr 7217 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( A  Func  C )  /\  h  e.  ( A  Func  C
) )  ->  ( 1st `  h ) ( A  Func  C )
( 2nd `  h
) )
5635, 54, 55sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 1st `  h ) ( A  Func  C )
( 2nd `  h
) )
5734, 28, 56funcf1 16526 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  ( 1st `  h ) : ( Base `  A
) --> ( Base `  C
) )
5857ffvelrnda 6359 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
( 1st `  h
) `  x )  e.  ( Base `  C
) )
59 eqid 2622 . . . . . . . . . . . . 13  |-  ( A Nat 
C )  =  ( A Nat  C )
60 simplrr 801 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  a  e.  ( f ( A Nat 
C ) g ) )
6159, 60nat1st2nd 16611 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  a  e.  ( <. ( 1st `  f
) ,  ( 2nd `  f ) >. ( A Nat  C ) <. ( 1st `  g ) ,  ( 2nd `  g
) >. ) )
62 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  x  e.  ( Base `  A
) )
6359, 61, 34, 29, 62natcl 16613 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
a `  x )  e.  ( ( ( 1st `  f ) `  x
) ( Hom  `  C
) ( ( 1st `  g ) `  x
) ) )
64 simplrl 800 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  b  e.  ( g ( A Nat 
C ) h ) )
6559, 64nat1st2nd 16611 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  b  e.  ( <. ( 1st `  g
) ,  ( 2nd `  g ) >. ( A Nat  C ) <. ( 1st `  h ) ,  ( 2nd `  h
) >. ) )
6659, 65, 34, 29, 62natcl 16613 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
b `  x )  e.  ( ( ( 1st `  g ) `  x
) ( Hom  `  C
) ( ( 1st `  h ) `  x
) ) )
6728, 29, 30, 31, 32, 33, 45, 53, 58, 63, 66comfeqval 16368 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
( b `  x
) ( <. (
( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) )  =  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) )
6827, 67mpteq12dva 4732 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  /\  (
b  e.  ( g ( A Nat  C ) h )  /\  a  e.  ( f ( A Nat 
C ) g ) ) )  ->  (
x  e.  ( Base `  A )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  C )
( ( 1st `  h
) `  x )
) ( a `  x ) ) )  =  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )
6924, 25, 68mpt2eq123dva 6716 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  ->  (
b  e.  ( g ( A Nat  C ) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  ( b  e.  ( g ( B Nat  D ) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
70 csbeq1a 3542 . . . . . . . . . 10  |-  ( g  =  ( 2nd `  v
)  ->  ( b  e.  ( g ( B Nat 
D ) h ) ,  a  e.  ( f ( B Nat  D
) g )  |->  ( x  e.  ( Base `  B )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  D )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) )  =  [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( B Nat 
D ) h ) ,  a  e.  ( f ( B Nat  D
) g )  |->  ( x  e.  ( Base `  B )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  D )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) ) )
7170adantl 482 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  ->  (
b  e.  ( g ( B Nat  D ) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  [_ ( 2nd `  v )  /  g ]_ (
b  e.  ( g ( B Nat  D ) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
7269, 71eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  /\  f  =  ( 1st `  v ) )  /\  g  =  ( 2nd `  v
) )  ->  (
b  e.  ( g ( A Nat  C ) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  [_ ( 2nd `  v )  /  g ]_ (
b  e.  ( g ( B Nat  D ) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
7319, 21, 22, 72csbiedf 3554 . . . . . . 7  |-  ( ( ( ph  /\  (
v  e.  ( ( A  Func  C )  X.  ( A  Func  C
) )  /\  h  e.  ( A  Func  C
) ) )  /\  f  =  ( 1st `  v ) )  ->  [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  [_ ( 2nd `  v )  /  g ]_ (
b  e.  ( g ( B Nat  D ) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )
74 csbeq1a 3542 . . . . . . . 8  |-  ( f  =  ( 1st `  v
)  ->  [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( B Nat 
D ) h ) ,  a  e.  ( f ( B Nat  D
) g )  |->  ( x  e.  ( Base `  B )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  D )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) ) )
7574adantl 482 . . . . . . 7  |-  ( ( ( ph  /\  (
v  e.  ( ( A  Func  C )  X.  ( A  Func  C
) )  /\  h  e.  ( A  Func  C
) ) )  /\  f  =  ( 1st `  v ) )  ->  [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( B Nat 
D ) h ) ,  a  e.  ( f ( B Nat  D
) g )  |->  ( x  e.  ( Base `  B )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  D )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) ) )
7673, 75eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( ( A  Func  C )  X.  ( A  Func  C
) )  /\  h  e.  ( A  Func  C
) ) )  /\  f  =  ( 1st `  v ) )  ->  [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( B Nat 
D ) h ) ,  a  e.  ( f ( B Nat  D
) g )  |->  ( x  e.  ( Base `  B )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  D )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) ) )
7715, 17, 18, 76csbiedf 3554 . . . . 5  |-  ( (
ph  /\  ( v  e.  ( ( A  Func  C )  X.  ( A 
Func  C ) )  /\  h  e.  ( A  Func  C ) ) )  ->  [_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) )  =  [_ ( 1st `  v )  /  f ]_ [_ ( 2nd `  v )  / 
g ]_ ( b  e.  ( g ( B Nat 
D ) h ) ,  a  e.  ( f ( B Nat  D
) g )  |->  ( x  e.  ( Base `  B )  |->  ( ( b `  x ) ( <. ( ( 1st `  f ) `  x
) ,  ( ( 1st `  g ) `
 x ) >.
(comp `  D )
( ( 1st `  h
) `  x )
) ( a `  x ) ) ) ) )
7813, 14, 77mpt2eq123dva 6716 . . . 4  |-  ( ph  ->  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) ) ,  h  e.  ( A 
Func  C )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  =  ( v  e.  ( ( B  Func  D
)  X.  ( B 
Func  D ) ) ,  h  e.  ( B 
Func  D )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) )
7978opeq2d 4409 . . 3  |-  ( ph  -> 
<. (comp `  ndx ) ,  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) ) ,  h  e.  ( A 
Func  C )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >.  =  <. (comp `  ndx ) ,  ( v  e.  ( ( B  Func  D )  X.  ( B 
Func  D ) ) ,  h  e.  ( B 
Func  D )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >.
)
8010, 12, 79tpeq123d 4283 . 2  |-  ( ph  ->  { <. ( Base `  ndx ) ,  ( A  Func  C ) >. ,  <. ( Hom  `  ndx ) ,  ( A Nat  C )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( A 
Func  C )  X.  ( A  Func  C ) ) ,  h  e.  ( A  Func  C )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. }  =  { <. ( Base `  ndx ) ,  ( B  Func  D
) >. ,  <. ( Hom  `  ndx ) ,  ( B Nat  D )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( B 
Func  D )  X.  ( B  Func  D ) ) ,  h  e.  ( B  Func  D )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
81 eqid 2622 . . 3  |-  ( A FuncCat  C )  =  ( A FuncCat  C )
82 eqid 2622 . . 3  |-  ( A 
Func  C )  =  ( A  Func  C )
83 eqidd 2623 . . 3  |-  ( ph  ->  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) ) ,  h  e.  ( A 
Func  C )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  =  ( v  e.  ( ( A  Func  C
)  X.  ( A 
Func  C ) ) ,  h  e.  ( A 
Func  C )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) )
8481, 82, 59, 34, 30, 5, 7, 83fucval 16618 . 2  |-  ( ph  ->  ( A FuncCat  C )  =  { <. ( Base `  ndx ) ,  ( A  Func  C ) >. ,  <. ( Hom  `  ndx ) ,  ( A Nat  C )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( A 
Func  C )  X.  ( A  Func  C ) ) ,  h  e.  ( A  Func  C )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( A Nat  C
) h ) ,  a  e.  ( f ( A Nat  C ) g )  |->  ( x  e.  ( Base `  A
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  C
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
85 eqid 2622 . . 3  |-  ( B FuncCat  D )  =  ( B FuncCat  D )
86 eqid 2622 . . 3  |-  ( B 
Func  D )  =  ( B  Func  D )
87 eqid 2622 . . 3  |-  ( B Nat 
D )  =  ( B Nat  D )
88 eqid 2622 . . 3  |-  ( Base `  B )  =  (
Base `  B )
89 eqidd 2623 . . 3  |-  ( ph  ->  ( v  e.  ( ( B  Func  D
)  X.  ( B 
Func  D ) ) ,  h  e.  ( B 
Func  D )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) )  =  ( v  e.  ( ( B  Func  D
)  X.  ( B 
Func  D ) ) ,  h  e.  ( B 
Func  D )  |->  [_ ( 1st `  v )  / 
f ]_ [_ ( 2nd `  v )  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) )
9085, 86, 87, 88, 31, 6, 8, 89fucval 16618 . 2  |-  ( ph  ->  ( B FuncCat  D )  =  { <. ( Base `  ndx ) ,  ( B  Func  D ) >. ,  <. ( Hom  `  ndx ) ,  ( B Nat  D )
>. ,  <. (comp `  ndx ) ,  ( v  e.  ( ( B 
Func  D )  X.  ( B  Func  D ) ) ,  h  e.  ( B  Func  D )  |-> 
[_ ( 1st `  v
)  /  f ]_ [_ ( 2nd `  v
)  /  g ]_ ( b  e.  ( g ( B Nat  D
) h ) ,  a  e.  ( f ( B Nat  D ) g )  |->  ( x  e.  ( Base `  B
)  |->  ( ( b `
 x ) (
<. ( ( 1st `  f
) `  x ) ,  ( ( 1st `  g ) `  x
) >. (comp `  D
) ( ( 1st `  h ) `  x
) ) ( a `
 x ) ) ) ) ) >. } )
9180, 84, 903eqtr4d 2666 1  |-  ( ph  ->  ( A FuncCat  C )  =  ( B FuncCat  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   _Vcvv 3200   [_csb 3533   {ctp 4181   <.cop 4183   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   Rel wrel 5119   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   ndxcnx 15854   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Hom f chomf 16327  compfccomf 16328    Func cfunc 16514   Nat cnat 16601   FuncCat cfuc 16602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-func 16518  df-nat 16603  df-fuc 16604
This theorem is referenced by:  oyoncl  16910
  Copyright terms: Public domain W3C validator