MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  natpropd Structured version   Visualization version   Unicode version

Theorem natpropd 16636
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
fucpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
fucpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
fucpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
fucpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
fucpropd.a  |-  ( ph  ->  A  e.  Cat )
fucpropd.b  |-  ( ph  ->  B  e.  Cat )
fucpropd.c  |-  ( ph  ->  C  e.  Cat )
fucpropd.d  |-  ( ph  ->  D  e.  Cat )
Assertion
Ref Expression
natpropd  |-  ( ph  ->  ( A Nat  C )  =  ( B Nat  D
) )

Proof of Theorem natpropd
Dummy variables  a 
f  g  h  r  s  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fucpropd.1 . . . 4  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
2 fucpropd.2 . . . 4  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
3 fucpropd.3 . . . 4  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
4 fucpropd.4 . . . 4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
5 fucpropd.a . . . 4  |-  ( ph  ->  A  e.  Cat )
6 fucpropd.b . . . 4  |-  ( ph  ->  B  e.  Cat )
7 fucpropd.c . . . 4  |-  ( ph  ->  C  e.  Cat )
8 fucpropd.d . . . 4  |-  ( ph  ->  D  e.  Cat )
91, 2, 3, 4, 5, 6, 7, 8funcpropd 16560 . . 3  |-  ( ph  ->  ( A  Func  C
)  =  ( B 
Func  D ) )
109adantr 481 . . 3  |-  ( (
ph  /\  f  e.  ( A  Func  C ) )  ->  ( A  Func  C )  =  ( B  Func  D )
)
11 nfv 1843 . . . 4  |-  F/ r ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )
12 nfcsb1v 3549 . . . . 5  |-  F/_ r [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }
1312a1i 11 . . . 4  |-  ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  ->  F/_ r [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
14 fvexd 6203 . . . 4  |-  ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  ->  ( 1st `  f )  e. 
_V )
15 nfv 1843 . . . . . 6  |-  F/ s ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )
16 nfcsb1v 3549 . . . . . . 7  |-  F/_ s [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }
1716a1i 11 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  F/_ s [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
18 fvexd 6203 . . . . . 6  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  -> 
( 1st `  g
)  e.  _V )
19 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  C )  =  (
Base `  C )
20 eqid 2622 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
21 eqid 2622 . . . . . . . . . . 11  |-  ( Hom  `  D )  =  ( Hom  `  D )
223ad4antr 768 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
23 eqid 2622 . . . . . . . . . . . . 13  |-  ( Base `  A )  =  (
Base `  A )
24 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  r  =  ( 1st `  f
) )
25 relfunc 16522 . . . . . . . . . . . . . . 15  |-  Rel  ( A  Func  C )
26 simpllr 799 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )
2726simpld 475 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  f  e.  ( A  Func  C
) )
28 1st2ndbr 7217 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( A  Func  C )  /\  f  e.  ( A  Func  C
) )  ->  ( 1st `  f ) ( A  Func  C )
( 2nd `  f
) )
2925, 27, 28sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  ( 1st `  f ) ( A  Func  C )
( 2nd `  f
) )
3024, 29eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  r
( A  Func  C
) ( 2nd `  f
) )
3123, 19, 30funcf1 16526 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  r : ( Base `  A
) --> ( Base `  C
) )
3231ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  (
r `  x )  e.  ( Base `  C
) )
33 simpr 477 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  s  =  ( 1st `  g
) )
3426simprd 479 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  g  e.  ( A  Func  C
) )
35 1st2ndbr 7217 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( A  Func  C )  /\  g  e.  ( A  Func  C
) )  ->  ( 1st `  g ) ( A  Func  C )
( 2nd `  g
) )
3625, 34, 35sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  ( 1st `  g ) ( A  Func  C )
( 2nd `  g
) )
3733, 36eqbrtrd 4675 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  s
( A  Func  C
) ( 2nd `  g
) )
3823, 19, 37funcf1 16526 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  s : ( Base `  A
) --> ( Base `  C
) )
3938ffvelrnda 6359 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  (
s `  x )  e.  ( Base `  C
) )
4019, 20, 21, 22, 32, 39homfeqval 16357 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  x  e.  ( Base `  A
) )  ->  (
( r `  x
) ( Hom  `  C
) ( s `  x ) )  =  ( ( r `  x ) ( Hom  `  D ) ( s `
 x ) ) )
4140ixpeq2dva 7923 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  C )
( s `  x
) )  =  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) ) )
421homfeqbas 16356 . . . . . . . . . . 11  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
4342ad3antrrr 766 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  ( Base `  A )  =  ( Base `  B
) )
4443ixpeq1d 7920 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  D )
( s `  x
) )  =  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) ) )
4541, 44eqtrd 2656 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  C )
( s `  x
) )  =  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) ) )
46 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
r `  x )  =  ( r `  z ) )
47 fveq2 6191 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
s `  x )  =  ( s `  z ) )
4846, 47oveq12d 6668 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( r `  x
) ( Hom  `  C
) ( s `  x ) )  =  ( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )
4948cbvixpv 7926 . . . . . . . . . 10  |-  X_ x  e.  ( Base `  A
) ( ( r `
 x ) ( Hom  `  C )
( s `  x
) )  =  X_ z  e.  ( Base `  A ) ( ( r `  z ) ( Hom  `  C
) ( s `  z ) )
5049eleq2i 2693 . . . . . . . . 9  |-  ( a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) )  <-> 
a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )
5143adantr 481 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  ->  ( Base `  A )  =  (
Base `  B )
)
5251adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  ( Base `  A )  =  ( Base `  B
) )
53 eqid 2622 . . . . . . . . . . . . 13  |-  ( Hom  `  A )  =  ( Hom  `  A )
54 eqid 2622 . . . . . . . . . . . . 13  |-  ( Hom  `  B )  =  ( Hom  `  B )
551ad6antr 772 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( Hom f  `  A )  =  ( Hom f  `  B ) )
56 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  ->  x  e.  ( Base `  A ) )
57 simpr 477 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
y  e.  ( Base `  A ) )
5823, 53, 54, 55, 56, 57homfeqval 16357 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( x ( Hom  `  A ) y )  =  ( x ( Hom  `  B )
y ) )
59 eqid 2622 . . . . . . . . . . . . . 14  |-  (comp `  C )  =  (comp `  C )
60 eqid 2622 . . . . . . . . . . . . . 14  |-  (comp `  D )  =  (comp `  D )
613ad7antr 774 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( Hom f  `  C
)  =  ( Hom f  `  D ) )
624ad7antr 774 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  (compf `  C )  =  (compf `  D ) )
6332adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
r `  x )  e.  ( Base `  C
) )
6463ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( r `  x )  e.  (
Base `  C )
)
6531ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  r : ( Base `  A
) --> ( Base `  C
) )
6665ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( r `  y
)  e.  ( Base `  C ) )
6766adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( r `  y )  e.  (
Base `  C )
)
6838ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  s : ( Base `  A
) --> ( Base `  C
) )
6968ffvelrnda 6359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( s `  y
)  e.  ( Base `  C ) )
7069adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( s `  y )  e.  (
Base `  C )
)
7130ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
r ( A  Func  C ) ( 2nd `  f
) )
7223, 53, 20, 71, 56, 57funcf2 16528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( x ( 2nd `  f ) y ) : ( x ( Hom  `  A )
y ) --> ( ( r `  x ) ( Hom  `  C
) ( r `  y ) ) )
7372ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
x ( 2nd `  f
) y ) `  h )  e.  ( ( r `  x
) ( Hom  `  C
) ( r `  y ) ) )
74 simplr 792 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )
75 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
r `  z )  =  ( r `  y ) )
76 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  y  ->  (
s `  z )  =  ( s `  y ) )
7775, 76oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( z  =  y  ->  (
( r `  z
) ( Hom  `  C
) ( s `  z ) )  =  ( ( r `  y ) ( Hom  `  C ) ( s `
 y ) ) )
7877fvixp 7913 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) )  /\  y  e.  ( Base `  A
) )  ->  (
a `  y )  e.  ( ( r `  y ) ( Hom  `  C ) ( s `
 y ) ) )
7974, 78sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( a `  y
)  e.  ( ( r `  y ) ( Hom  `  C
) ( s `  y ) ) )
8079adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( a `  y )  e.  ( ( r `  y
) ( Hom  `  C
) ( s `  y ) ) )
8119, 20, 59, 60, 61, 62, 64, 67, 70, 73, 80comfeqval 16368 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
a `  y )
( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) ) )
8239adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
s `  x )  e.  ( Base `  C
) )
8382ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( s `  x )  e.  (
Base `  C )
)
84 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  (
r `  z )  =  ( r `  x ) )
85 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  x  ->  (
s `  z )  =  ( s `  x ) )
8684, 85oveq12d 6668 . . . . . . . . . . . . . . . . 17  |-  ( z  =  x  ->  (
( r `  z
) ( Hom  `  C
) ( s `  z ) )  =  ( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )
8786fvixp 7913 . . . . . . . . . . . . . . . 16  |-  ( ( a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) )  /\  x  e.  ( Base `  A
) )  ->  (
a `  x )  e.  ( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )
8887adantll 750 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  (
a `  x )  e.  ( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )
8988ad2antrr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( a `  x )  e.  ( ( r `  x
) ( Hom  `  C
) ( s `  x ) ) )
9037ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
s ( A  Func  C ) ( 2nd `  g
) )
9123, 53, 20, 90, 56, 57funcf2 16528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( x ( 2nd `  g ) y ) : ( x ( Hom  `  A )
y ) --> ( ( s `  x ) ( Hom  `  C
) ( s `  y ) ) )
9291ffvelrnda 6359 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
x ( 2nd `  g
) y ) `  h )  e.  ( ( s `  x
) ( Hom  `  C
) ( s `  y ) ) )
9319, 20, 59, 60, 61, 62, 64, 83, 70, 89, 92comfeqval 16368 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
( x ( 2nd `  g ) y ) `
 h ) (
<. ( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) )
9481, 93eqeq12d 2637 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  /\  y  e.  ( Base `  A
) )  /\  h  e.  ( x ( Hom  `  A ) y ) )  ->  ( (
( a `  y
) ( <. (
r `  x ) ,  ( r `  y ) >. (comp `  C ) ( s `
 y ) ) ( ( x ( 2nd `  f ) y ) `  h
) )  =  ( ( ( x ( 2nd `  g ) y ) `  h
) ( <. (
r `  x ) ,  ( s `  x ) >. (comp `  C ) ( s `
 y ) ) ( a `  x
) )  <->  ( (
a `  y )
( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
9558, 94raleqbidva 3154 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  /\  s  =  ( 1st `  g ) )  /\  a  e.  X_ z  e.  ( Base `  A
) ( ( r `
 z ) ( Hom  `  C )
( s `  z
) ) )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. h  e.  (
x ( Hom  `  B
) y ) ( ( a `  y
) ( <. (
r `  x ) ,  ( r `  y ) >. (comp `  D ) ( s `
 y ) ) ( ( x ( 2nd `  f ) y ) `  h
) )  =  ( ( ( x ( 2nd `  g ) y ) `  h
) ( <. (
r `  x ) ,  ( s `  x ) >. (comp `  D ) ( s `
 y ) ) ( a `  x
) ) ) )
9652, 95raleqbidva 3154 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  /\  x  e.  ( Base `  A
) )  ->  ( A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
9751, 96raleqbidva 3154 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ z  e.  (
Base `  A )
( ( r `  z ) ( Hom  `  C ) ( s `
 z ) ) )  ->  ( A. x  e.  ( Base `  A ) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
9850, 97sylan2b 492 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  /\  a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) ) )  ->  ( A. x  e.  ( Base `  A ) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) ) )
9945, 98rabeqbidva 3196 . . . . . . 7  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  { a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) )  |  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  { a  e.  X_ x  e.  (
Base `  B )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  |  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
100 csbeq1a 3542 . . . . . . . 8  |-  ( s  =  ( 1st `  g
)  ->  { a  e.  X_ x  e.  (
Base `  B )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  |  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
101100adantl 482 . . . . . . 7  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  { a  e.  X_ x  e.  (
Base `  B )
( ( r `  x ) ( Hom  `  D ) ( s `
 x ) )  |  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) A. h  e.  ( x ( Hom  `  B ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
10299, 101eqtrd 2656 . . . . . 6  |-  ( ( ( ( ph  /\  ( f  e.  ( A  Func  C )  /\  g  e.  ( A  Func  C ) ) )  /\  r  =  ( 1st `  f
) )  /\  s  =  ( 1st `  g
) )  ->  { a  e.  X_ x  e.  (
Base `  A )
( ( r `  x ) ( Hom  `  C ) ( s `
 x ) )  |  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) A. h  e.  ( x ( Hom  `  A ) y ) ( ( a `  y ) ( <.
( r `  x
) ,  ( r `
 y ) >.
(comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
10315, 17, 18, 102csbiedf 3554 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x
) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
104 csbeq1a 3542 . . . . . 6  |-  ( r  =  ( 1st `  f
)  ->  [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
105104adantl 482 . . . . 5  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
106103, 105eqtrd 2656 . . . 4  |-  ( ( ( ph  /\  (
f  e.  ( A 
Func  C )  /\  g  e.  ( A  Func  C
) ) )  /\  r  =  ( 1st `  f ) )  ->  [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
10711, 13, 14, 106csbiedf 3554 . . 3  |-  ( (
ph  /\  ( f  e.  ( A  Func  C
)  /\  g  e.  ( A  Func  C ) ) )  ->  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) }  =  [_ ( 1st `  f )  / 
r ]_ [_ ( 1st `  g )  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
1089, 10, 107mpt2eq123dva 6716 . 2  |-  ( ph  ->  ( f  e.  ( A  Func  C ) ,  g  e.  ( A  Func  C )  |->  [_ ( 1st `  f )  /  r ]_ [_ ( 1st `  g )  / 
s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x
) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) } )  =  ( f  e.  ( B 
Func  D ) ,  g  e.  ( B  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } ) )
109 eqid 2622 . . 3  |-  ( A Nat 
C )  =  ( A Nat  C )
110109, 23, 53, 20, 59natfval 16606 . 2  |-  ( A Nat 
C )  =  ( f  e.  ( A 
Func  C ) ,  g  e.  ( A  Func  C )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  A ) ( ( r `  x ) ( Hom  `  C
) ( s `  x ) )  | 
A. x  e.  (
Base `  A ) A. y  e.  ( Base `  A ) A. h  e.  ( x
( Hom  `  A ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  C )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  C )
( s `  y
) ) ( a `
 x ) ) } )
111 eqid 2622 . . 3  |-  ( B Nat 
D )  =  ( B Nat  D )
112 eqid 2622 . . 3  |-  ( Base `  B )  =  (
Base `  B )
113111, 112, 54, 21, 60natfval 16606 . 2  |-  ( B Nat 
D )  =  ( f  e.  ( B 
Func  D ) ,  g  e.  ( B  Func  D )  |->  [_ ( 1st `  f
)  /  r ]_ [_ ( 1st `  g
)  /  s ]_ { a  e.  X_ x  e.  ( Base `  B ) ( ( r `  x ) ( Hom  `  D
) ( s `  x ) )  | 
A. x  e.  (
Base `  B ) A. y  e.  ( Base `  B ) A. h  e.  ( x
( Hom  `  B ) y ) ( ( a `  y ) ( <. ( r `  x ) ,  ( r `  y )
>. (comp `  D )
( s `  y
) ) ( ( x ( 2nd `  f
) y ) `  h ) )  =  ( ( ( x ( 2nd `  g
) y ) `  h ) ( <.
( r `  x
) ,  ( s `
 x ) >.
(comp `  D )
( s `  y
) ) ( a `
 x ) ) } )
114108, 110, 1133eqtr4g 2681 1  |-  ( ph  ->  ( A Nat  C )  =  ( B Nat  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   {crab 2916   _Vcvv 3200   [_csb 3533   <.cop 4183   class class class wbr 4653   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Hom f chomf 16327  compfccomf 16328    Func cfunc 16514   Nat cnat 16601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-func 16518  df-nat 16603
This theorem is referenced by:  fucpropd  16637
  Copyright terms: Public domain W3C validator