MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oyoncl Structured version   Visualization version   Unicode version

Theorem oyoncl 16910
Description: The opposite Yoneda embedding is a functor from oppCat `  C to the functor category  C  ->  SetCat. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
oyoncl.o  |-  O  =  (oppCat `  C )
oyoncl.y  |-  Y  =  (Yon `  O )
oyoncl.c  |-  ( ph  ->  C  e.  Cat )
oyoncl.s  |-  S  =  ( SetCat `  U )
oyoncl.u  |-  ( ph  ->  U  e.  V )
oyoncl.h  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
oyoncl.q  |-  Q  =  ( C FuncCat  S )
Assertion
Ref Expression
oyoncl  |-  ( ph  ->  Y  e.  ( O 
Func  Q ) )

Proof of Theorem oyoncl
StepHypRef Expression
1 oyoncl.y . . 3  |-  Y  =  (Yon `  O )
2 oyoncl.c . . . 4  |-  ( ph  ->  C  e.  Cat )
3 oyoncl.o . . . . 5  |-  O  =  (oppCat `  C )
43oppccat 16382 . . . 4  |-  ( C  e.  Cat  ->  O  e.  Cat )
52, 4syl 17 . . 3  |-  ( ph  ->  O  e.  Cat )
6 eqid 2622 . . 3  |-  (oppCat `  O )  =  (oppCat `  O )
7 oyoncl.s . . 3  |-  S  =  ( SetCat `  U )
8 eqid 2622 . . 3  |-  ( (oppCat `  O ) FuncCat  S )  =  ( (oppCat `  O ) FuncCat  S )
9 oyoncl.u . . 3  |-  ( ph  ->  U  e.  V )
10 eqid 2622 . . . . . . 7  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
113, 10oppchomf 16380 . . . . . 6  |- tpos  ( Hom f  `  C )  =  ( Hom f  `  O )
1211rneqi 5352 . . . . 5  |-  ran tpos  ( Hom f  `  C )  =  ran  ( Hom f  `  O )
13 relxp 5227 . . . . . . 7  |-  Rel  (
( Base `  C )  X.  ( Base `  C
) )
14 eqid 2622 . . . . . . . . . 10  |-  ( Base `  C )  =  (
Base `  C )
1510, 14homffn 16353 . . . . . . . . 9  |-  ( Hom f  `  C )  Fn  (
( Base `  C )  X.  ( Base `  C
) )
16 fndm 5990 . . . . . . . . 9  |-  ( ( Hom f  `  C )  Fn  (
( Base `  C )  X.  ( Base `  C
) )  ->  dom  ( Hom f  `  C )  =  ( ( Base `  C
)  X.  ( Base `  C ) ) )
1715, 16ax-mp 5 . . . . . . . 8  |-  dom  ( Hom f  `  C )  =  ( ( Base `  C
)  X.  ( Base `  C ) )
1817releqi 5202 . . . . . . 7  |-  ( Rel 
dom  ( Hom f  `  C )  <->  Rel  ( ( Base `  C
)  X.  ( Base `  C ) ) )
1913, 18mpbir 221 . . . . . 6  |-  Rel  dom  ( Hom f  `  C )
20 rntpos 7365 . . . . . 6  |-  ( Rel 
dom  ( Hom f  `  C )  ->  ran tpos  ( Hom f  `  C
)  =  ran  ( Hom f  `  C ) )
2119, 20ax-mp 5 . . . . 5  |-  ran tpos  ( Hom f  `  C )  =  ran  ( Hom f  `  C )
2212, 21eqtr3i 2646 . . . 4  |-  ran  ( Hom f  `  O )  =  ran  ( Hom f  `  C )
23 oyoncl.h . . . 4  |-  ( ph  ->  ran  ( Hom f  `  C ) 
C_  U )
2422, 23syl5eqss 3649 . . 3  |-  ( ph  ->  ran  ( Hom f  `  O ) 
C_  U )
251, 5, 6, 7, 8, 9, 24yoncl 16902 . 2  |-  ( ph  ->  Y  e.  ( O 
Func  ( (oppCat `  O ) FuncCat  S ) ) )
26 oyoncl.q . . . 4  |-  Q  =  ( C FuncCat  S )
2732oppchomf 16384 . . . . . 6  |-  ( Hom f  `  C )  =  ( Hom f  `  (oppCat `  O )
)
2827a1i 11 . . . . 5  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  (oppCat `  O
) ) )
2932oppccomf 16385 . . . . . 6  |-  (compf `  C
)  =  (compf `  (oppCat `  O ) )
3029a1i 11 . . . . 5  |-  ( ph  ->  (compf `  C )  =  (compf `  (oppCat `  O ) ) )
31 eqidd 2623 . . . . 5  |-  ( ph  ->  ( Hom f  `  S )  =  ( Hom f  `  S ) )
32 eqidd 2623 . . . . 5  |-  ( ph  ->  (compf `  S )  =  (compf `  S ) )
336oppccat 16382 . . . . . 6  |-  ( O  e.  Cat  ->  (oppCat `  O )  e.  Cat )
345, 33syl 17 . . . . 5  |-  ( ph  ->  (oppCat `  O )  e.  Cat )
357setccat 16735 . . . . . 6  |-  ( U  e.  V  ->  S  e.  Cat )
369, 35syl 17 . . . . 5  |-  ( ph  ->  S  e.  Cat )
3728, 30, 31, 32, 2, 34, 36, 36fucpropd 16637 . . . 4  |-  ( ph  ->  ( C FuncCat  S )  =  ( (oppCat `  O ) FuncCat  S ) )
3826, 37syl5eq 2668 . . 3  |-  ( ph  ->  Q  =  ( (oppCat `  O ) FuncCat  S ) )
3938oveq2d 6666 . 2  |-  ( ph  ->  ( O  Func  Q
)  =  ( O 
Func  ( (oppCat `  O ) FuncCat  S ) ) )
4025, 39eleqtrrd 2704 1  |-  ( ph  ->  Y  e.  ( O 
Func  Q ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    C_ wss 3574    X. cxp 5112   dom cdm 5114   ran crn 5115   Rel wrel 5119    Fn wfn 5883   ` cfv 5888  (class class class)co 6650  tpos ctpos 7351   Basecbs 15857   Catccat 16325   Hom f chomf 16327  compfccomf 16328  oppCatcoppc 16371    Func cfunc 16514   FuncCat cfuc 16602   SetCatcsetc 16725  Yoncyon 16889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-oppc 16372  df-func 16518  df-nat 16603  df-fuc 16604  df-setc 16726  df-xpc 16812  df-curf 16854  df-hof 16890  df-yon 16891
This theorem is referenced by:  oyon1cl  16911
  Copyright terms: Public domain W3C validator