MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1st2ndbr Structured version   Visualization version   Unicode version

Theorem 1st2ndbr 7217
Description: Express an element of a relation as a relationship between first and second components. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
1st2ndbr  |-  ( ( Rel  B  /\  A  e.  B )  ->  ( 1st `  A ) B ( 2nd `  A
) )

Proof of Theorem 1st2ndbr
StepHypRef Expression
1 1st2nd 7214 . . 3  |-  ( ( Rel  B  /\  A  e.  B )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
2 simpr 477 . . 3  |-  ( ( Rel  B  /\  A  e.  B )  ->  A  e.  B )
31, 2eqeltrrd 2702 . 2  |-  ( ( Rel  B  /\  A  e.  B )  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  B )
4 df-br 4654 . 2  |-  ( ( 1st `  A ) B ( 2nd `  A
)  <->  <. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  B
)
53, 4sylibr 224 1  |-  ( ( Rel  B  /\  A  e.  B )  ->  ( 1st `  A ) B ( 2nd `  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   <.cop 4183   class class class wbr 4653   Rel wrel 5119   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  cofuval  16542  cofu1  16544  cofu2  16546  cofucl  16548  cofuass  16549  cofulid  16550  cofurid  16551  funcres  16556  cofull  16594  cofth  16595  isnat2  16608  fuccocl  16624  fucidcl  16625  fuclid  16626  fucrid  16627  fucass  16628  fucsect  16632  fucinv  16633  invfuc  16634  fuciso  16635  natpropd  16636  fucpropd  16637  homahom  16689  homadm  16690  homacd  16691  homadmcd  16692  catciso  16757  prfval  16839  prfcl  16843  prf1st  16844  prf2nd  16845  1st2ndprf  16846  evlfcllem  16861  evlfcl  16862  curf1cl  16868  curf2cl  16871  curfcl  16872  uncf1  16876  uncf2  16877  curfuncf  16878  uncfcurf  16879  diag1cl  16882  diag2cl  16886  curf2ndf  16887  yon1cl  16903  oyon1cl  16911  yonedalem1  16912  yonedalem21  16913  yonedalem3a  16914  yonedalem4c  16917  yonedalem22  16918  yonedalem3b  16919  yonedalem3  16920  yonedainv  16921  yonffthlem  16922  yoniso  16925  utop2nei  22054  utop3cls  22055
  Copyright terms: Public domain W3C validator