MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funciso Structured version   Visualization version   Unicode version

Theorem funciso 16534
Description: The image of an isomorphism under a functor is an isomorphism. Proposition 3.21 of [Adamek] p. 32. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
funciso.b  |-  B  =  ( Base `  D
)
funciso.s  |-  I  =  (  Iso  `  D
)
funciso.t  |-  J  =  (  Iso  `  E
)
funciso.f  |-  ( ph  ->  F ( D  Func  E ) G )
funciso.x  |-  ( ph  ->  X  e.  B )
funciso.y  |-  ( ph  ->  Y  e.  B )
funciso.m  |-  ( ph  ->  M  e.  ( X I Y ) )
Assertion
Ref Expression
funciso  |-  ( ph  ->  ( ( X G Y ) `  M
)  e.  ( ( F `  X ) J ( F `  Y ) ) )

Proof of Theorem funciso
StepHypRef Expression
1 eqid 2622 . 2  |-  ( Base `  E )  =  (
Base `  E )
2 eqid 2622 . 2  |-  (Inv `  E )  =  (Inv
`  E )
3 funciso.f . . . . 5  |-  ( ph  ->  F ( D  Func  E ) G )
4 df-br 4654 . . . . 5  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
53, 4sylib 208 . . . 4  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
6 funcrcl 16523 . . . 4  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
75, 6syl 17 . . 3  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
87simprd 479 . 2  |-  ( ph  ->  E  e.  Cat )
9 funciso.b . . . 4  |-  B  =  ( Base `  D
)
109, 1, 3funcf1 16526 . . 3  |-  ( ph  ->  F : B --> ( Base `  E ) )
11 funciso.x . . 3  |-  ( ph  ->  X  e.  B )
1210, 11ffvelrnd 6360 . 2  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  E ) )
13 funciso.y . . 3  |-  ( ph  ->  Y  e.  B )
1410, 13ffvelrnd 6360 . 2  |-  ( ph  ->  ( F `  Y
)  e.  ( Base `  E ) )
15 funciso.t . 2  |-  J  =  (  Iso  `  E
)
16 eqid 2622 . . 3  |-  (Inv `  D )  =  (Inv
`  D )
17 funciso.m . . . . 5  |-  ( ph  ->  M  e.  ( X I Y ) )
187simpld 475 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
19 funciso.s . . . . . 6  |-  I  =  (  Iso  `  D
)
209, 16, 18, 11, 13, 19isoval 16425 . . . . 5  |-  ( ph  ->  ( X I Y )  =  dom  ( X (Inv `  D ) Y ) )
2117, 20eleqtrd 2703 . . . 4  |-  ( ph  ->  M  e.  dom  ( X (Inv `  D ) Y ) )
229, 16, 18, 11, 13invfun 16424 . . . . 5  |-  ( ph  ->  Fun  ( X (Inv
`  D ) Y ) )
23 funfvbrb 6330 . . . . 5  |-  ( Fun  ( X (Inv `  D ) Y )  ->  ( M  e. 
dom  ( X (Inv
`  D ) Y )  <->  M ( X (Inv
`  D ) Y ) ( ( X (Inv `  D ) Y ) `  M
) ) )
2422, 23syl 17 . . . 4  |-  ( ph  ->  ( M  e.  dom  ( X (Inv `  D
) Y )  <->  M ( X (Inv `  D ) Y ) ( ( X (Inv `  D
) Y ) `  M ) ) )
2521, 24mpbid 222 . . 3  |-  ( ph  ->  M ( X (Inv
`  D ) Y ) ( ( X (Inv `  D ) Y ) `  M
) )
269, 16, 2, 3, 11, 13, 25funcinv 16533 . 2  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) (Inv
`  E ) ( F `  Y ) ) ( ( Y G X ) `  ( ( X (Inv
`  D ) Y ) `  M ) ) )
271, 2, 8, 12, 14, 15, 26inviso1 16426 1  |-  ( ph  ->  ( ( X G Y ) `  M
)  e.  ( ( F `  X ) J ( F `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   dom cdm 5114   Fun wfun 5882   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Catccat 16325  Invcinv 16405    Iso ciso 16406    Func cfunc 16514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-sect 16407  df-inv 16408  df-iso 16409  df-func 16518
This theorem is referenced by:  ffthiso  16589
  Copyright terms: Public domain W3C validator