| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcoppc | Structured version Visualization version Unicode version | ||
| Description: A functor on categories yields a functor on the opposite categories (in the same direction), see definition 3.41 of [Adamek] p. 39. (Contributed by Mario Carneiro, 4-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcoppc.o |
|
| funcoppc.p |
|
| funcoppc.f |
|
| Ref | Expression |
|---|---|
| funcoppc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcoppc.o |
. . 3
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | 1, 2 | oppcbas 16378 |
. 2
|
| 4 | funcoppc.p |
. . 3
| |
| 5 | eqid 2622 |
. . 3
| |
| 6 | 4, 5 | oppcbas 16378 |
. 2
|
| 7 | eqid 2622 |
. 2
| |
| 8 | eqid 2622 |
. 2
| |
| 9 | eqid 2622 |
. 2
| |
| 10 | eqid 2622 |
. 2
| |
| 11 | eqid 2622 |
. 2
| |
| 12 | eqid 2622 |
. 2
| |
| 13 | funcoppc.f |
. . . . . 6
| |
| 14 | df-br 4654 |
. . . . . 6
| |
| 15 | 13, 14 | sylib 208 |
. . . . 5
|
| 16 | funcrcl 16523 |
. . . . 5
| |
| 17 | 15, 16 | syl 17 |
. . . 4
|
| 18 | 17 | simpld 475 |
. . 3
|
| 19 | 1 | oppccat 16382 |
. . 3
|
| 20 | 18, 19 | syl 17 |
. 2
|
| 21 | 17 | simprd 479 |
. . 3
|
| 22 | 4 | oppccat 16382 |
. . 3
|
| 23 | 21, 22 | syl 17 |
. 2
|
| 24 | 2, 5, 13 | funcf1 16526 |
. 2
|
| 25 | 2, 13 | funcfn2 16529 |
. . 3
|
| 26 | tposfn 7381 |
. . 3
| |
| 27 | 25, 26 | syl 17 |
. 2
|
| 28 | eqid 2622 |
. . . 4
| |
| 29 | eqid 2622 |
. . . 4
| |
| 30 | 13 | adantr 481 |
. . . 4
|
| 31 | simprr 796 |
. . . 4
| |
| 32 | simprl 794 |
. . . 4
| |
| 33 | 2, 28, 29, 30, 31, 32 | funcf2 16528 |
. . 3
|
| 34 | ovtpos 7367 |
. . . . 5
| |
| 35 | 34 | feq1i 6036 |
. . . 4
|
| 36 | 28, 1 | oppchom 16375 |
. . . . 5
|
| 37 | 29, 4 | oppchom 16375 |
. . . . 5
|
| 38 | 36, 37 | feq23i 6039 |
. . . 4
|
| 39 | 35, 38 | bitri 264 |
. . 3
|
| 40 | 33, 39 | sylibr 224 |
. 2
|
| 41 | eqid 2622 |
. . . 4
| |
| 42 | eqid 2622 |
. . . 4
| |
| 43 | 13 | adantr 481 |
. . . 4
|
| 44 | simpr 477 |
. . . 4
| |
| 45 | 2, 41, 42, 43, 44 | funcid 16530 |
. . 3
|
| 46 | ovtpos 7367 |
. . . . 5
| |
| 47 | 46 | a1i 11 |
. . . 4
|
| 48 | 1, 41 | oppcid 16381 |
. . . . . . 7
|
| 49 | 18, 48 | syl 17 |
. . . . . 6
|
| 50 | 49 | adantr 481 |
. . . . 5
|
| 51 | 50 | fveq1d 6193 |
. . . 4
|
| 52 | 47, 51 | fveq12d 6197 |
. . 3
|
| 53 | 4, 42 | oppcid 16381 |
. . . . . 6
|
| 54 | 21, 53 | syl 17 |
. . . . 5
|
| 55 | 54 | adantr 481 |
. . . 4
|
| 56 | 55 | fveq1d 6193 |
. . 3
|
| 57 | 45, 52, 56 | 3eqtr4d 2666 |
. 2
|
| 58 | eqid 2622 |
. . . . 5
| |
| 59 | eqid 2622 |
. . . . 5
| |
| 60 | 13 | 3ad2ant1 1082 |
. . . . 5
|
| 61 | simp23 1096 |
. . . . 5
| |
| 62 | simp22 1095 |
. . . . 5
| |
| 63 | simp21 1094 |
. . . . 5
| |
| 64 | simp3r 1090 |
. . . . . 6
| |
| 65 | 28, 1 | oppchom 16375 |
. . . . . 6
|
| 66 | 64, 65 | syl6eleq 2711 |
. . . . 5
|
| 67 | simp3l 1089 |
. . . . . 6
| |
| 68 | 67, 36 | syl6eleq 2711 |
. . . . 5
|
| 69 | 2, 28, 58, 59, 60, 61, 62, 63, 66, 68 | funcco 16531 |
. . . 4
|
| 70 | 2, 58, 1, 63, 62, 61 | oppcco 16377 |
. . . . 5
|
| 71 | 70 | fveq2d 6195 |
. . . 4
|
| 72 | 24 | 3ad2ant1 1082 |
. . . . . 6
|
| 73 | 72, 63 | ffvelrnd 6360 |
. . . . 5
|
| 74 | 72, 62 | ffvelrnd 6360 |
. . . . 5
|
| 75 | 72, 61 | ffvelrnd 6360 |
. . . . 5
|
| 76 | 5, 59, 4, 73, 74, 75 | oppcco 16377 |
. . . 4
|
| 77 | 69, 71, 76 | 3eqtr4d 2666 |
. . 3
|
| 78 | ovtpos 7367 |
. . . 4
| |
| 79 | 78 | fveq1i 6192 |
. . 3
|
| 80 | ovtpos 7367 |
. . . . 5
| |
| 81 | 80 | fveq1i 6192 |
. . . 4
|
| 82 | 34 | fveq1i 6192 |
. . . 4
|
| 83 | 81, 82 | oveq12i 6662 |
. . 3
|
| 84 | 77, 79, 83 | 3eqtr4g 2681 |
. 2
|
| 85 | 3, 6, 7, 8, 9, 10, 11, 12, 20, 23, 24, 27, 40, 57, 84 | isfuncd 16525 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-tpos 7352 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-hom 15966 df-cco 15967 df-cat 16329 df-cid 16330 df-oppc 16372 df-func 16518 |
| This theorem is referenced by: fulloppc 16582 fthoppc 16583 yonedalem1 16912 yonedalem21 16913 yonedalem22 16918 |
| Copyright terms: Public domain | W3C validator |