MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcsect Structured version   Visualization version   Unicode version

Theorem funcsect 16532
Description: The image of a section under a functor is a section. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcsect.b  |-  B  =  ( Base `  D
)
funcsect.s  |-  S  =  (Sect `  D )
funcsect.t  |-  T  =  (Sect `  E )
funcsect.f  |-  ( ph  ->  F ( D  Func  E ) G )
funcsect.x  |-  ( ph  ->  X  e.  B )
funcsect.y  |-  ( ph  ->  Y  e.  B )
funcsect.m  |-  ( ph  ->  M ( X S Y ) N )
Assertion
Ref Expression
funcsect  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) T ( F `  Y
) ) ( ( Y G X ) `
 N ) )

Proof of Theorem funcsect
StepHypRef Expression
1 funcsect.m . . . . . 6  |-  ( ph  ->  M ( X S Y ) N )
2 funcsect.b . . . . . . 7  |-  B  =  ( Base `  D
)
3 eqid 2622 . . . . . . 7  |-  ( Hom  `  D )  =  ( Hom  `  D )
4 eqid 2622 . . . . . . 7  |-  (comp `  D )  =  (comp `  D )
5 eqid 2622 . . . . . . 7  |-  ( Id
`  D )  =  ( Id `  D
)
6 funcsect.s . . . . . . 7  |-  S  =  (Sect `  D )
7 funcsect.f . . . . . . . . . 10  |-  ( ph  ->  F ( D  Func  E ) G )
8 df-br 4654 . . . . . . . . . 10  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
97, 8sylib 208 . . . . . . . . 9  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
10 funcrcl 16523 . . . . . . . . 9  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
119, 10syl 17 . . . . . . . 8  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
1211simpld 475 . . . . . . 7  |-  ( ph  ->  D  e.  Cat )
13 funcsect.x . . . . . . 7  |-  ( ph  ->  X  e.  B )
14 funcsect.y . . . . . . 7  |-  ( ph  ->  Y  e.  B )
152, 3, 4, 5, 6, 12, 13, 14issect 16413 . . . . . 6  |-  ( ph  ->  ( M ( X S Y ) N  <-> 
( M  e.  ( X ( Hom  `  D
) Y )  /\  N  e.  ( Y
( Hom  `  D ) X )  /\  ( N ( <. X ,  Y >. (comp `  D
) X ) M )  =  ( ( Id `  D ) `
 X ) ) ) )
161, 15mpbid 222 . . . . 5  |-  ( ph  ->  ( M  e.  ( X ( Hom  `  D
) Y )  /\  N  e.  ( Y
( Hom  `  D ) X )  /\  ( N ( <. X ,  Y >. (comp `  D
) X ) M )  =  ( ( Id `  D ) `
 X ) ) )
1716simp3d 1075 . . . 4  |-  ( ph  ->  ( N ( <. X ,  Y >. (comp `  D ) X ) M )  =  ( ( Id `  D
) `  X )
)
1817fveq2d 6195 . . 3  |-  ( ph  ->  ( ( X G X ) `  ( N ( <. X ,  Y >. (comp `  D
) X ) M ) )  =  ( ( X G X ) `  ( ( Id `  D ) `
 X ) ) )
19 eqid 2622 . . . 4  |-  (comp `  E )  =  (comp `  E )
2016simp1d 1073 . . . 4  |-  ( ph  ->  M  e.  ( X ( Hom  `  D
) Y ) )
2116simp2d 1074 . . . 4  |-  ( ph  ->  N  e.  ( Y ( Hom  `  D
) X ) )
222, 3, 4, 19, 7, 13, 14, 13, 20, 21funcco 16531 . . 3  |-  ( ph  ->  ( ( X G X ) `  ( N ( <. X ,  Y >. (comp `  D
) X ) M ) )  =  ( ( ( Y G X ) `  N
) ( <. ( F `  X ) ,  ( F `  Y ) >. (comp `  E ) ( F `
 X ) ) ( ( X G Y ) `  M
) ) )
23 eqid 2622 . . . 4  |-  ( Id
`  E )  =  ( Id `  E
)
242, 5, 23, 7, 13funcid 16530 . . 3  |-  ( ph  ->  ( ( X G X ) `  (
( Id `  D
) `  X )
)  =  ( ( Id `  E ) `
 ( F `  X ) ) )
2518, 22, 243eqtr3d 2664 . 2  |-  ( ph  ->  ( ( ( Y G X ) `  N ) ( <.
( F `  X
) ,  ( F `
 Y ) >.
(comp `  E )
( F `  X
) ) ( ( X G Y ) `
 M ) )  =  ( ( Id
`  E ) `  ( F `  X ) ) )
26 eqid 2622 . . 3  |-  ( Base `  E )  =  (
Base `  E )
27 eqid 2622 . . 3  |-  ( Hom  `  E )  =  ( Hom  `  E )
28 funcsect.t . . 3  |-  T  =  (Sect `  E )
2911simprd 479 . . 3  |-  ( ph  ->  E  e.  Cat )
302, 26, 7funcf1 16526 . . . 4  |-  ( ph  ->  F : B --> ( Base `  E ) )
3130, 13ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  X
)  e.  ( Base `  E ) )
3230, 14ffvelrnd 6360 . . 3  |-  ( ph  ->  ( F `  Y
)  e.  ( Base `  E ) )
332, 3, 27, 7, 13, 14funcf2 16528 . . . 4  |-  ( ph  ->  ( X G Y ) : ( X ( Hom  `  D
) Y ) --> ( ( F `  X
) ( Hom  `  E
) ( F `  Y ) ) )
3433, 20ffvelrnd 6360 . . 3  |-  ( ph  ->  ( ( X G Y ) `  M
)  e.  ( ( F `  X ) ( Hom  `  E
) ( F `  Y ) ) )
352, 3, 27, 7, 14, 13funcf2 16528 . . . 4  |-  ( ph  ->  ( Y G X ) : ( Y ( Hom  `  D
) X ) --> ( ( F `  Y
) ( Hom  `  E
) ( F `  X ) ) )
3635, 21ffvelrnd 6360 . . 3  |-  ( ph  ->  ( ( Y G X ) `  N
)  e.  ( ( F `  Y ) ( Hom  `  E
) ( F `  X ) ) )
3726, 27, 19, 23, 28, 29, 31, 32, 34, 36issect2 16414 . 2  |-  ( ph  ->  ( ( ( X G Y ) `  M ) ( ( F `  X ) T ( F `  Y ) ) ( ( Y G X ) `  N )  <-> 
( ( ( Y G X ) `  N ) ( <.
( F `  X
) ,  ( F `
 Y ) >.
(comp `  E )
( F `  X
) ) ( ( X G Y ) `
 M ) )  =  ( ( Id
`  E ) `  ( F `  X ) ) ) )
3825, 37mpbird 247 1  |-  ( ph  ->  ( ( X G Y ) `  M
) ( ( F `
 X ) T ( F `  Y
) ) ( ( Y G X ) `
 N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326  Sectcsect 16404    Func cfunc 16514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-sect 16407  df-func 16518
This theorem is referenced by:  funcinv  16533
  Copyright terms: Public domain W3C validator