| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funcco | Structured version Visualization version Unicode version | ||
| Description: A functor maps composition in the source category to composition in the target. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| funcco.b |
|
| funcco.h |
|
| funcco.o |
|
| funcco.O |
|
| funcco.f |
|
| funcco.x |
|
| funcco.y |
|
| funcco.z |
|
| funcco.m |
|
| funcco.n |
|
| Ref | Expression |
|---|---|
| funcco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcco.f |
. . . 4
| |
| 2 | funcco.b |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | funcco.h |
. . . . 5
| |
| 5 | eqid 2622 |
. . . . 5
| |
| 6 | eqid 2622 |
. . . . 5
| |
| 7 | eqid 2622 |
. . . . 5
| |
| 8 | funcco.o |
. . . . 5
| |
| 9 | funcco.O |
. . . . 5
| |
| 10 | df-br 4654 |
. . . . . . . 8
| |
| 11 | 1, 10 | sylib 208 |
. . . . . . 7
|
| 12 | funcrcl 16523 |
. . . . . . 7
| |
| 13 | 11, 12 | syl 17 |
. . . . . 6
|
| 14 | 13 | simpld 475 |
. . . . 5
|
| 15 | 13 | simprd 479 |
. . . . 5
|
| 16 | 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 | isfunc 16524 |
. . . 4
|
| 17 | 1, 16 | mpbid 222 |
. . 3
|
| 18 | 17 | simp3d 1075 |
. 2
|
| 19 | funcco.x |
. . 3
| |
| 20 | funcco.y |
. . . . . 6
| |
| 21 | 20 | adantr 481 |
. . . . 5
|
| 22 | funcco.z |
. . . . . . 7
| |
| 23 | 22 | ad2antrr 762 |
. . . . . 6
|
| 24 | funcco.m |
. . . . . . . . 9
| |
| 25 | 24 | ad3antrrr 766 |
. . . . . . . 8
|
| 26 | simpllr 799 |
. . . . . . . . 9
| |
| 27 | simplr 792 |
. . . . . . . . 9
| |
| 28 | 26, 27 | oveq12d 6668 |
. . . . . . . 8
|
| 29 | 25, 28 | eleqtrrd 2704 |
. . . . . . 7
|
| 30 | funcco.n |
. . . . . . . . . 10
| |
| 31 | 30 | ad4antr 768 |
. . . . . . . . 9
|
| 32 | simpllr 799 |
. . . . . . . . . 10
| |
| 33 | simplr 792 |
. . . . . . . . . 10
| |
| 34 | 32, 33 | oveq12d 6668 |
. . . . . . . . 9
|
| 35 | 31, 34 | eleqtrrd 2704 |
. . . . . . . 8
|
| 36 | simp-5r 809 |
. . . . . . . . . . 11
| |
| 37 | simpllr 799 |
. . . . . . . . . . 11
| |
| 38 | 36, 37 | oveq12d 6668 |
. . . . . . . . . 10
|
| 39 | simp-4r 807 |
. . . . . . . . . . . . 13
| |
| 40 | 36, 39 | opeq12d 4410 |
. . . . . . . . . . . 12
|
| 41 | 40, 37 | oveq12d 6668 |
. . . . . . . . . . 11
|
| 42 | simpr 477 |
. . . . . . . . . . 11
| |
| 43 | simplr 792 |
. . . . . . . . . . 11
| |
| 44 | 41, 42, 43 | oveq123d 6671 |
. . . . . . . . . 10
|
| 45 | 38, 44 | fveq12d 6197 |
. . . . . . . . 9
|
| 46 | 36 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 47 | 39 | fveq2d 6195 |
. . . . . . . . . . . 12
|
| 48 | 46, 47 | opeq12d 4410 |
. . . . . . . . . . 11
|
| 49 | 37 | fveq2d 6195 |
. . . . . . . . . . 11
|
| 50 | 48, 49 | oveq12d 6668 |
. . . . . . . . . 10
|
| 51 | 39, 37 | oveq12d 6668 |
. . . . . . . . . . 11
|
| 52 | 51, 42 | fveq12d 6197 |
. . . . . . . . . 10
|
| 53 | 36, 39 | oveq12d 6668 |
. . . . . . . . . . 11
|
| 54 | 53, 43 | fveq12d 6197 |
. . . . . . . . . 10
|
| 55 | 50, 52, 54 | oveq123d 6671 |
. . . . . . . . 9
|
| 56 | 45, 55 | eqeq12d 2637 |
. . . . . . . 8
|
| 57 | 35, 56 | rspcdv 3312 |
. . . . . . 7
|
| 58 | 29, 57 | rspcimdv 3310 |
. . . . . 6
|
| 59 | 23, 58 | rspcimdv 3310 |
. . . . 5
|
| 60 | 21, 59 | rspcimdv 3310 |
. . . 4
|
| 61 | 60 | adantld 483 |
. . 3
|
| 62 | 19, 61 | rspcimdv 3310 |
. 2
|
| 63 | 18, 62 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-ixp 7909 df-func 16518 |
| This theorem is referenced by: funcsect 16532 funcoppc 16535 cofucl 16548 funcres 16556 fthsect 16585 fthmon 16587 catcisolem 16756 prfcl 16843 evlfcllem 16861 curf1cl 16868 curf2cl 16871 curfcl 16872 uncfcurf 16879 yonedalem4c 16917 |
| Copyright terms: Public domain | W3C validator |