MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcid Structured version   Visualization version   Unicode version

Theorem funcid 16530
Description: A functor maps each identity to the corresponding identity in the target category. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
funcid.b  |-  B  =  ( Base `  D
)
funcid.1  |-  .1.  =  ( Id `  D )
funcid.i  |-  I  =  ( Id `  E
)
funcid.f  |-  ( ph  ->  F ( D  Func  E ) G )
funcid.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
funcid  |-  ( ph  ->  ( ( X G X ) `  (  .1.  `  X ) )  =  ( I `  ( F `  X ) ) )

Proof of Theorem funcid
Dummy variables  m  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funcid.x . 2  |-  ( ph  ->  X  e.  B )
2 funcid.f . . . . 5  |-  ( ph  ->  F ( D  Func  E ) G )
3 funcid.b . . . . . 6  |-  B  =  ( Base `  D
)
4 eqid 2622 . . . . . 6  |-  ( Base `  E )  =  (
Base `  E )
5 eqid 2622 . . . . . 6  |-  ( Hom  `  D )  =  ( Hom  `  D )
6 eqid 2622 . . . . . 6  |-  ( Hom  `  E )  =  ( Hom  `  E )
7 funcid.1 . . . . . 6  |-  .1.  =  ( Id `  D )
8 funcid.i . . . . . 6  |-  I  =  ( Id `  E
)
9 eqid 2622 . . . . . 6  |-  (comp `  D )  =  (comp `  D )
10 eqid 2622 . . . . . 6  |-  (comp `  E )  =  (comp `  E )
11 df-br 4654 . . . . . . . . 9  |-  ( F ( D  Func  E
) G  <->  <. F ,  G >.  e.  ( D 
Func  E ) )
122, 11sylib 208 . . . . . . . 8  |-  ( ph  -> 
<. F ,  G >.  e.  ( D  Func  E
) )
13 funcrcl 16523 . . . . . . . 8  |-  ( <. F ,  G >.  e.  ( D  Func  E
)  ->  ( D  e.  Cat  /\  E  e. 
Cat ) )
1412, 13syl 17 . . . . . . 7  |-  ( ph  ->  ( D  e.  Cat  /\  E  e.  Cat )
)
1514simpld 475 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
1614simprd 479 . . . . . 6  |-  ( ph  ->  E  e.  Cat )
173, 4, 5, 6, 7, 8, 9, 10, 15, 16isfunc 16524 . . . . 5  |-  ( ph  ->  ( F ( D 
Func  E ) G  <->  ( F : B --> ( Base `  E
)  /\  G  e.  X_ z  e.  ( B  X.  B ) ( ( ( F `  ( 1st `  z ) ) ( Hom  `  E
) ( F `  ( 2nd `  z ) ) )  ^m  (
( Hom  `  D ) `
 z ) )  /\  A. x  e.  B  ( ( ( x G x ) `
 (  .1.  `  x ) )  =  ( I `  ( F `  x )
)  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x ( Hom  `  D ) y ) A. n  e.  ( y ( Hom  `  D
) z ) ( ( x G z ) `  ( n ( <. x ,  y
>. (comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) ) )
182, 17mpbid 222 . . . 4  |-  ( ph  ->  ( F : B --> ( Base `  E )  /\  G  e.  X_ z  e.  ( B  X.  B
) ( ( ( F `  ( 1st `  z ) ) ( Hom  `  E )
( F `  ( 2nd `  z ) ) )  ^m  ( ( Hom  `  D ) `  z ) )  /\  A. x  e.  B  ( ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x ( Hom  `  D ) y ) A. n  e.  ( y ( Hom  `  D
) z ) ( ( x G z ) `  ( n ( <. x ,  y
>. (comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) ) )
1918simp3d 1075 . . 3  |-  ( ph  ->  A. x  e.  B  ( ( ( x G x ) `  (  .1.  `  x )
)  =  ( I `
 ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x
( Hom  `  D ) y ) A. n  e.  ( y ( Hom  `  D ) z ) ( ( x G z ) `  (
n ( <. x ,  y >. (comp `  D ) z ) m ) )  =  ( ( ( y G z ) `  n ) ( <.
( F `  x
) ,  ( F `
 y ) >.
(comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) ) )
20 simpl 473 . . . 4  |-  ( ( ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x ( Hom  `  D ) y ) A. n  e.  ( y ( Hom  `  D
) z ) ( ( x G z ) `  ( n ( <. x ,  y
>. (comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) )  ->  ( (
x G x ) `
 (  .1.  `  x ) )  =  ( I `  ( F `  x )
) )
2120ralimi 2952 . . 3  |-  ( A. x  e.  B  (
( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  /\  A. y  e.  B  A. z  e.  B  A. m  e.  ( x ( Hom  `  D ) y ) A. n  e.  ( y ( Hom  `  D
) z ) ( ( x G z ) `  ( n ( <. x ,  y
>. (comp `  D )
z ) m ) )  =  ( ( ( y G z ) `  n ) ( <. ( F `  x ) ,  ( F `  y )
>. (comp `  E )
( F `  z
) ) ( ( x G y ) `
 m ) ) )  ->  A. x  e.  B  ( (
x G x ) `
 (  .1.  `  x ) )  =  ( I `  ( F `  x )
) )
2219, 21syl 17 . 2  |-  ( ph  ->  A. x  e.  B  ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) ) )
23 id 22 . . . . . 6  |-  ( x  =  X  ->  x  =  X )
2423, 23oveq12d 6668 . . . . 5  |-  ( x  =  X  ->  (
x G x )  =  ( X G X ) )
25 fveq2 6191 . . . . 5  |-  ( x  =  X  ->  (  .1.  `  x )  =  (  .1.  `  X
) )
2624, 25fveq12d 6197 . . . 4  |-  ( x  =  X  ->  (
( x G x ) `  (  .1.  `  x ) )  =  ( ( X G X ) `  (  .1.  `  X ) ) )
27 fveq2 6191 . . . . 5  |-  ( x  =  X  ->  ( F `  x )  =  ( F `  X ) )
2827fveq2d 6195 . . . 4  |-  ( x  =  X  ->  (
I `  ( F `  x ) )  =  ( I `  ( F `  X )
) )
2926, 28eqeq12d 2637 . . 3  |-  ( x  =  X  ->  (
( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  <->  ( ( X G X ) `  (  .1.  `  X )
)  =  ( I `
 ( F `  X ) ) ) )
3029rspcv 3305 . 2  |-  ( X  e.  B  ->  ( A. x  e.  B  ( ( x G x ) `  (  .1.  `  x ) )  =  ( I `  ( F `  x ) )  ->  ( ( X G X ) `  (  .1.  `  X )
)  =  ( I `
 ( F `  X ) ) ) )
311, 22, 30sylc 65 1  |-  ( ph  ->  ( ( X G X ) `  (  .1.  `  X ) )  =  ( I `  ( F `  X ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653    X. cxp 5112   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857   X_cixp 7908   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    Func cfunc 16514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ixp 7909  df-func 16518
This theorem is referenced by:  funcsect  16532  funcoppc  16535  cofucl  16548  funcres  16556  fthsect  16585  catcisolem  16756  prfcl  16843  evlfcl  16862  curf1cl  16868  curfcl  16872  curfuncf  16878  yonedainv  16921
  Copyright terms: Public domain W3C validator