MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzval2 Structured version   Visualization version   Unicode version

Theorem fzval2 12329
Description: An alternative way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )

Proof of Theorem fzval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzval 12328 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
2 zssre 11384 . . . . . . 7  |-  ZZ  C_  RR
3 ressxr 10083 . . . . . . 7  |-  RR  C_  RR*
42, 3sstri 3612 . . . . . 6  |-  ZZ  C_  RR*
54sseli 3599 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  RR* )
64sseli 3599 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR* )
7 iccval 12214 . . . . 5  |-  ( ( M  e.  RR*  /\  N  e.  RR* )  ->  ( M [,] N )  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
85, 6, 7syl2an 494 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M [,] N
)  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
98ineq1d 3813 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M [,] N )  i^i  ZZ )  =  ( {
k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ ) )
10 inrab2 3900 . . . 4  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  (
RR*  i^i  ZZ )  |  ( M  <_ 
k  /\  k  <_  N ) }
11 sseqin2 3817 . . . . . 6  |-  ( ZZ  C_  RR*  <->  ( RR*  i^i  ZZ )  =  ZZ )
124, 11mpbi 220 . . . . 5  |-  ( RR*  i^i 
ZZ )  =  ZZ
13 rabeq 3192 . . . . 5  |-  ( (
RR*  i^i  ZZ )  =  ZZ  ->  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) } )
1412, 13ax-mp 5 . . . 4  |-  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
1510, 14eqtri 2644 . . 3  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
169, 15syl6req 2673 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }  =  ( ( M [,] N
)  i^i  ZZ )
)
171, 16eqtrd 2656 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916    i^i cin 3573    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   RRcr 9935   RR*cxr 10073    <_ cle 10075   ZZcz 11377   [,]cicc 12178   ...cfz 12326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-xr 10078  df-neg 10269  df-z 11378  df-icc 12182  df-fz 12327
This theorem is referenced by:  dvfsumle  23784  dvfsumabs  23786  taylplem1  24117  taylplem2  24118  taylpfval  24119  dvtaylp  24124  ppisval  24830
  Copyright terms: Public domain W3C validator