MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppisval Structured version   Visualization version   Unicode version

Theorem ppisval 24830
Description: The set of primes less than  A expressed using a finite set of integers. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
ppisval  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) )

Proof of Theorem ppisval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3834 . . . . . . . 8  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
2 simpr 477 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  e.  ( (
0 [,] A )  i^i  Prime ) )
31, 2sseldi 3601 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  e.  Prime )
4 prmuz2 15408 . . . . . . 7  |-  ( x  e.  Prime  ->  x  e.  ( ZZ>= `  2 )
)
53, 4syl 17 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  e.  ( ZZ>= ` 
2 ) )
6 prmz 15389 . . . . . . . 8  |-  ( x  e.  Prime  ->  x  e.  ZZ )
73, 6syl 17 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  e.  ZZ )
8 flcl 12596 . . . . . . . 8  |-  ( A  e.  RR  ->  ( |_ `  A )  e.  ZZ )
98adantr 481 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  A
)  e.  ZZ )
10 inss1 3833 . . . . . . . . . . 11  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
1110, 2sseldi 3601 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  e.  ( 0 [,] A ) )
12 0re 10040 . . . . . . . . . . 11  |-  0  e.  RR
13 simpl 473 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
14 elicc2 12238 . . . . . . . . . . 11  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( x  e.  ( 0 [,] A )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <_  A ) ) )
1512, 13, 14sylancr 695 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( x  e.  ( 0 [,] A )  <-> 
( x  e.  RR  /\  0  <_  x  /\  x  <_  A ) ) )
1611, 15mpbid 222 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( x  e.  RR  /\  0  <_  x  /\  x  <_  A ) )
1716simp3d 1075 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  <_  A )
18 flge 12606 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  x  e.  ZZ )  ->  ( x  <_  A  <->  x  <_  ( |_ `  A ) ) )
197, 18syldan 487 . . . . . . . 8  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( x  <_  A  <->  x  <_  ( |_ `  A ) ) )
2017, 19mpbid 222 . . . . . . 7  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  <_  ( |_ `  A ) )
21 eluz2 11693 . . . . . . 7  |-  ( ( |_ `  A )  e.  ( ZZ>= `  x
)  <->  ( x  e.  ZZ  /\  ( |_
`  A )  e.  ZZ  /\  x  <_ 
( |_ `  A
) ) )
227, 9, 20, 21syl3anbrc 1246 . . . . . 6  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  A
)  e.  ( ZZ>= `  x ) )
23 elfzuzb 12336 . . . . . 6  |-  ( x  e.  ( 2 ... ( |_ `  A
) )  <->  ( x  e.  ( ZZ>= `  2 )  /\  ( |_ `  A
)  e.  ( ZZ>= `  x ) ) )
245, 22, 23sylanbrc 698 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  e.  ( 2 ... ( |_ `  A ) ) )
2524, 3elind 3798 . . . 4  |-  ( ( A  e.  RR  /\  x  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  x  e.  ( (
2 ... ( |_ `  A ) )  i^i 
Prime ) )
2625ex 450 . . 3  |-  ( A  e.  RR  ->  (
x  e.  ( ( 0 [,] A )  i^i  Prime )  ->  x  e.  ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) ) )
2726ssrdv 3609 . 2  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  C_  ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) )
28 2z 11409 . . . . 5  |-  2  e.  ZZ
29 fzval2 12329 . . . . 5  |-  ( ( 2  e.  ZZ  /\  ( |_ `  A )  e.  ZZ )  -> 
( 2 ... ( |_ `  A ) )  =  ( ( 2 [,] ( |_ `  A ) )  i^i 
ZZ ) )
3028, 8, 29sylancr 695 . . . 4  |-  ( A  e.  RR  ->  (
2 ... ( |_ `  A ) )  =  ( ( 2 [,] ( |_ `  A
) )  i^i  ZZ ) )
31 inss1 3833 . . . . 5  |-  ( ( 2 [,] ( |_
`  A ) )  i^i  ZZ )  C_  ( 2 [,] ( |_ `  A ) )
3212a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  0  e.  RR )
33 id 22 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  RR )
34 0le2 11111 . . . . . . 7  |-  0  <_  2
3534a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  0  <_  2 )
36 flle 12600 . . . . . 6  |-  ( A  e.  RR  ->  ( |_ `  A )  <_  A )
37 iccss 12241 . . . . . 6  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( 0  <_ 
2  /\  ( |_ `  A )  <_  A
) )  ->  (
2 [,] ( |_
`  A ) ) 
C_  ( 0 [,] A ) )
3832, 33, 35, 36, 37syl22anc 1327 . . . . 5  |-  ( A  e.  RR  ->  (
2 [,] ( |_
`  A ) ) 
C_  ( 0 [,] A ) )
3931, 38syl5ss 3614 . . . 4  |-  ( A  e.  RR  ->  (
( 2 [,] ( |_ `  A ) )  i^i  ZZ )  C_  ( 0 [,] A
) )
4030, 39eqsstrd 3639 . . 3  |-  ( A  e.  RR  ->  (
2 ... ( |_ `  A ) )  C_  ( 0 [,] A
) )
41 ssrin 3838 . . 3  |-  ( ( 2 ... ( |_
`  A ) ) 
C_  ( 0 [,] A )  ->  (
( 2 ... ( |_ `  A ) )  i^i  Prime )  C_  (
( 0 [,] A
)  i^i  Prime ) )
4240, 41syl 17 . 2  |-  ( A  e.  RR  ->  (
( 2 ... ( |_ `  A ) )  i^i  Prime )  C_  (
( 0 [,] A
)  i^i  Prime ) )
4327, 42eqssd 3620 1  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  =  ( ( 2 ... ( |_ `  A
) )  i^i  Prime ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   RRcr 9935   0cc0 9936    <_ cle 10075   2c2 11070   ZZcz 11377   ZZ>=cuz 11687   [,]cicc 12178   ...cfz 12326   |_cfl 12591   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-icc 12182  df-fz 12327  df-fl 12593  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-prm 15386
This theorem is referenced by:  ppisval2  24831  ppifi  24832  ppival2  24854  chtfl  24875  chtprm  24879  chtnprm  24880  ppifl  24886  cht1  24891  chtlepsi  24931  chpval2  24943  chpub  24945  chtvalz  30707
  Copyright terms: Public domain W3C validator