MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvtaylp Structured version   Visualization version   Unicode version

Theorem dvtaylp 24124
Description: The derivative of the Taylor polynomial is the Taylor polynomial of the derivative of the function. (Contributed by Mario Carneiro, 31-Dec-2016.)
Hypotheses
Ref Expression
dvtaylp.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvtaylp.f  |-  ( ph  ->  F : A --> CC )
dvtaylp.a  |-  ( ph  ->  A  C_  S )
dvtaylp.n  |-  ( ph  ->  N  e.  NN0 )
dvtaylp.b  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  ( N  +  1 ) ) )
Assertion
Ref Expression
dvtaylp  |-  ( ph  ->  ( CC  _D  (
( N  +  1 ) ( S Tayl  F
) B ) )  =  ( N ( S Tayl  ( S  _D  F ) ) B ) )

Proof of Theorem dvtaylp
Dummy variables  j 
k  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . . . 6  |-  ( TopOpen ` fld )  e.  _V
2 eqid 2622 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
32cnfldtopon 22586 . . . . . . . 8  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
43toponunii 20721 . . . . . . 7  |-  CC  =  U. ( TopOpen ` fld )
54restid 16094 . . . . . 6  |-  ( (
TopOpen ` fld )  e.  _V  ->  ( ( TopOpen ` fld )t  CC )  =  (
TopOpen ` fld ) )
61, 5ax-mp 5 . . . . 5  |-  ( (
TopOpen ` fld )t  CC )  =  (
TopOpen ` fld )
76eqcomi 2631 . . . 4  |-  ( TopOpen ` fld )  =  ( ( TopOpen ` fld )t  CC )
8 cnelprrecn 10029 . . . . 5  |-  CC  e.  { RR ,  CC }
98a1i 11 . . . 4  |-  ( ph  ->  CC  e.  { RR ,  CC } )
10 toponmax 20730 . . . . 5  |-  ( (
TopOpen ` fld )  e.  (TopOn `  CC )  ->  CC  e.  ( TopOpen ` fld ) )
113, 10mp1i 13 . . . 4  |-  ( ph  ->  CC  e.  ( TopOpen ` fld )
)
12 fzfid 12772 . . . 4  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  e.  Fin )
13 dvtaylp.s . . . . . . . . . 10  |-  ( ph  ->  S  e.  { RR ,  CC } )
1413adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  S  e.  { RR ,  CC } )
15 cnex 10017 . . . . . . . . . . . 12  |-  CC  e.  _V
1615a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  CC  e.  _V )
17 dvtaylp.f . . . . . . . . . . 11  |-  ( ph  ->  F : A --> CC )
18 dvtaylp.a . . . . . . . . . . 11  |-  ( ph  ->  A  C_  S )
19 elpm2r 7875 . . . . . . . . . . 11  |-  ( ( ( CC  e.  _V  /\  S  e.  { RR ,  CC } )  /\  ( F : A --> CC  /\  A  C_  S ) )  ->  F  e.  ( CC  ^pm  S )
)
2016, 13, 17, 18, 19syl22anc 1327 . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( CC 
^pm  S ) )
2120adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  F  e.  ( CC  ^pm  S
) )
22 elfznn0 12433 . . . . . . . . . 10  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  k  e.  NN0 )
2322adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  k  e.  NN0 )
24 dvnf 23690 . . . . . . . . 9  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  k  e.  NN0 )  ->  ( ( S  Dn F ) `
 k ) : dom  ( ( S  Dn F ) `
 k ) --> CC )
2514, 21, 23, 24syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( S  Dn
F ) `  k
) : dom  (
( S  Dn
F ) `  k
) --> CC )
26 0z 11388 . . . . . . . . . . . 12  |-  0  e.  ZZ
27 dvtaylp.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  NN0 )
28 peano2nn0 11333 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2927, 28syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
3029nn0zd 11480 . . . . . . . . . . . 12  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
31 fzval2 12329 . . . . . . . . . . . 12  |-  ( ( 0  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( 0 ... ( N  +  1 ) )  =  ( ( 0 [,] ( N  +  1 ) )  i^i  ZZ ) )
3226, 30, 31sylancr 695 . . . . . . . . . . 11  |-  ( ph  ->  ( 0 ... ( N  +  1 ) )  =  ( ( 0 [,] ( N  +  1 ) )  i^i  ZZ ) )
3332eleq2d 2687 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  ( 0 ... ( N  +  1 ) )  <-> 
k  e.  ( ( 0 [,] ( N  +  1 ) )  i^i  ZZ ) ) )
3433biimpa 501 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  k  e.  ( ( 0 [,] ( N  +  1 ) )  i^i  ZZ ) )
35 dvtaylp.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  dom  (
( S  Dn
F ) `  ( N  +  1 ) ) )
3613, 17, 18, 29, 35taylplem1 24117 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( 0 [,] ( N  +  1 ) )  i^i  ZZ ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
3734, 36syldan 487 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  B  e.  dom  ( ( S  Dn F ) `
 k ) )
3825, 37ffvelrnd 6360 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( S  Dn F ) `  k ) `  B
)  e.  CC )
39 faccl 13070 . . . . . . . . 9  |-  ( k  e.  NN0  ->  ( ! `
 k )  e.  NN )
4023, 39syl 17 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ! `  k )  e.  NN )
4140nncnd 11036 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ! `  k )  e.  CC )
4240nnne0d 11065 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ! `  k )  =/=  0 )
4338, 41, 42divcld 10801 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  CC )
44433adant3 1081 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  CC )
45 simp3 1063 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  x  e.  CC )
46 recnprss 23668 . . . . . . . . . . 11  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
4713, 46syl 17 . . . . . . . . . 10  |-  ( ph  ->  S  C_  CC )
4818, 47sstrd 3613 . . . . . . . . 9  |-  ( ph  ->  A  C_  CC )
49 dvnbss 23691 . . . . . . . . . . . 12  |-  ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm  S
)  /\  ( N  +  1 )  e. 
NN0 )  ->  dom  ( ( S  Dn F ) `  ( N  +  1
) )  C_  dom  F )
5013, 20, 29, 49syl3anc 1326 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 ( N  + 
1 ) )  C_  dom  F )
51 fdm 6051 . . . . . . . . . . . 12  |-  ( F : A --> CC  ->  dom 
F  =  A )
5217, 51syl 17 . . . . . . . . . . 11  |-  ( ph  ->  dom  F  =  A )
5350, 52sseqtrd 3641 . . . . . . . . . 10  |-  ( ph  ->  dom  ( ( S  Dn F ) `
 ( N  + 
1 ) )  C_  A )
5453, 35sseldd 3604 . . . . . . . . 9  |-  ( ph  ->  B  e.  A )
5548, 54sseldd 3604 . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
56553ad2ant1 1082 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  B  e.  CC )
5745, 56subcld 10392 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  (
x  -  B )  e.  CC )
58223ad2ant2 1083 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  k  e.  NN0 )
5957, 58expcld 13008 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  (
( x  -  B
) ^ k )  e.  CC )
6044, 59mulcld 10060 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) )  e.  CC )
61 0cnd 10033 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  k  =  0 )  -> 
0  e.  CC )
6258nn0cnd 11353 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  k  e.  CC )
6362adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  k  e.  CC )
6457adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  ( x  -  B )  e.  CC )
6558adantr 481 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  k  e.  NN0 )
66 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  -.  k  = 
0 )
6766neqned 2801 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  k  =/=  0
)
68 elnnne0 11306 . . . . . . . . . 10  |-  ( k  e.  NN  <->  ( k  e.  NN0  /\  k  =/=  0 ) )
6965, 67, 68sylanbrc 698 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  k  e.  NN )
70 nnm1nn0 11334 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
7169, 70syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  ( k  - 
1 )  e.  NN0 )
7264, 71expcld 13008 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  ( ( x  -  B ) ^
( k  -  1 ) )  e.  CC )
7363, 72mulcld 10060 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  /\  -.  k  =  0 )  ->  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) )  e.  CC )
7461, 73ifclda 4120 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )  e.  CC )
7544, 74mulcld 10060 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) )  /\  x  e.  CC )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) )  e.  CC )
768a1i 11 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  CC  e.  { RR ,  CC } )
77593expa 1265 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  (
( x  -  B
) ^ k )  e.  CC )
78743expa 1265 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )  e.  CC )
79573expa 1265 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  (
x  -  B )  e.  CC )
80 1cnd 10056 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  1  e.  CC )
81 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  y  e.  CC )  ->  y  e.  CC )
8223adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  y  e.  CC )  ->  k  e.  NN0 )
8381, 82expcld 13008 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  y  e.  CC )  ->  (
y ^ k )  e.  CC )
84 c0ex 10034 . . . . . . . . 9  |-  0  e.  _V
85 ovex 6678 . . . . . . . . 9  |-  ( k  x.  ( y ^
( k  -  1 ) ) )  e. 
_V
8684, 85ifex 4156 . . . . . . . 8  |-  if ( k  =  0 ,  0 ,  ( k  x.  ( y ^
( k  -  1 ) ) ) )  e.  _V
8786a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  y  e.  CC )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( y ^ ( k  - 
1 ) ) ) )  e.  _V )
88 simpr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  x  e.  CC )
8976dvmptid 23720 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  x ) )  =  ( x  e.  CC  |->  1 ) )
9055ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  B  e.  CC )
91 0cnd 10033 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  0  e.  CC )
9255adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  B  e.  CC )
9376, 92dvmptc 23721 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  B ) )  =  ( x  e.  CC  |->  0 ) )
9476, 88, 80, 89, 90, 91, 93dvmptsub 23730 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x  -  B ) ) )  =  ( x  e.  CC  |->  ( 1  -  0 ) ) )
95 1m0e1 11131 . . . . . . . . 9  |-  ( 1  -  0 )  =  1
9695mpteq2i 4741 . . . . . . . 8  |-  ( x  e.  CC  |->  ( 1  -  0 ) )  =  ( x  e.  CC  |->  1 )
9794, 96syl6eq 2672 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( x  -  B ) ) )  =  ( x  e.  CC  |->  1 ) )
98 dvexp2 23717 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( CC 
_D  ( y  e.  CC  |->  ( y ^
k ) ) )  =  ( y  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( y ^ (
k  -  1 ) ) ) ) ) )
9923, 98syl 17 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( y  e.  CC  |->  ( y ^
k ) ) )  =  ( y  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( y ^ (
k  -  1 ) ) ) ) ) )
100 oveq1 6657 . . . . . . 7  |-  ( y  =  ( x  -  B )  ->  (
y ^ k )  =  ( ( x  -  B ) ^
k ) )
101 oveq1 6657 . . . . . . . . 9  |-  ( y  =  ( x  -  B )  ->  (
y ^ ( k  -  1 ) )  =  ( ( x  -  B ) ^
( k  -  1 ) ) )
102101oveq2d 6666 . . . . . . . 8  |-  ( y  =  ( x  -  B )  ->  (
k  x.  ( y ^ ( k  - 
1 ) ) )  =  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) )
103102ifeq2d 4105 . . . . . . 7  |-  ( y  =  ( x  -  B )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( y ^ ( k  - 
1 ) ) ) )  =  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) ) )
10476, 76, 79, 80, 83, 87, 97, 99, 100, 103dvmptco 23735 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( ( x  -  B ) ^
k ) ) )  =  ( x  e.  CC  |->  ( if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) )  x.  1 ) ) )
10578mulid1d 10057 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  /\  x  e.  CC )  ->  ( if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )  x.  1 )  =  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) ) )
106105mpteq2dva 4744 . . . . . 6  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
x  e.  CC  |->  ( if ( k  =  0 ,  0 ,  ( k  x.  (
( x  -  B
) ^ ( k  -  1 ) ) ) )  x.  1 ) )  =  ( x  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) ) )
107104, 106eqtrd 2656 . . . . 5  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( ( x  -  B ) ^
k ) ) )  =  ( x  e.  CC  |->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) ) ) )
10876, 77, 78, 107, 43dvmptcmul 23727 . . . 4  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( CC  _D  ( x  e.  CC  |->  ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  ( ( x  -  B ) ^
k ) ) ) )  =  ( x  e.  CC  |->  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) ) ) ) )
1097, 2, 9, 11, 12, 60, 75, 108dvmptfsum 23738 . . 3  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) ) ) )
110 1zzd 11408 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  1  e.  ZZ )
111 0zd 11389 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  0  e.  ZZ )
11227nn0zd 11480 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
113112adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  N  e.  ZZ )
114 dvfg 23670 . . . . . . . 8  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  F ) : dom  ( S  _D  F
) --> CC )
11513, 114syl 17 . . . . . . 7  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
11647, 17, 18dvbss 23665 . . . . . . . 8  |-  ( ph  ->  dom  ( S  _D  F )  C_  A
)
117116, 18sstrd 3613 . . . . . . 7  |-  ( ph  ->  dom  ( S  _D  F )  C_  S
)
118 1nn0 11308 . . . . . . . . . . . 12  |-  1  e.  NN0
119118a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  1  e.  NN0 )
120 dvnadd 23692 . . . . . . . . . . 11  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( 1  e.  NN0  /\  N  e.  NN0 )
)  ->  ( ( S  Dn ( ( S  Dn F ) `  1 ) ) `  N )  =  ( ( S  Dn F ) `
 ( 1  +  N ) ) )
12113, 20, 119, 27, 120syl22anc 1327 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  Dn ( ( S  Dn F ) `
 1 ) ) `
 N )  =  ( ( S  Dn F ) `  ( 1  +  N
) ) )
122 dvn1 23689 . . . . . . . . . . . . 13  |-  ( ( S  C_  CC  /\  F  e.  ( CC  ^pm  S
) )  ->  (
( S  Dn
F ) `  1
)  =  ( S  _D  F ) )
12347, 20, 122syl2anc 693 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( S  Dn F ) ` 
1 )  =  ( S  _D  F ) )
124123oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( S  Dn
( ( S  Dn F ) ` 
1 ) )  =  ( S  Dn
( S  _D  F
) ) )
125124fveq1d 6193 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  Dn ( ( S  Dn F ) `
 1 ) ) `
 N )  =  ( ( S  Dn ( S  _D  F ) ) `  N ) )
126 1cnd 10056 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
12727nn0cnd 11353 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  CC )
128126, 127addcomd 10238 . . . . . . . . . . 11  |-  ( ph  ->  ( 1  +  N
)  =  ( N  +  1 ) )
129128fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( ( S  Dn F ) `  ( 1  +  N
) )  =  ( ( S  Dn
F ) `  ( N  +  1 ) ) )
130121, 125, 1293eqtr3d 2664 . . . . . . . . 9  |-  ( ph  ->  ( ( S  Dn ( S  _D  F ) ) `  N )  =  ( ( S  Dn
F ) `  ( N  +  1 ) ) )
131130dmeqd 5326 . . . . . . . 8  |-  ( ph  ->  dom  ( ( S  Dn ( S  _D  F ) ) `
 N )  =  dom  ( ( S  Dn F ) `
 ( N  + 
1 ) ) )
13235, 131eleqtrrd 2704 . . . . . . 7  |-  ( ph  ->  B  e.  dom  (
( S  Dn
( S  _D  F
) ) `  N
) )
13313, 115, 117, 27, 132taylplem2 24118 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  j  e.  ( 0 ... N
) )  ->  (
( ( ( ( S  Dn ( S  _D  F ) ) `  j ) `
 B )  / 
( ! `  j
) )  x.  (
( x  -  B
) ^ j ) )  e.  CC )
134 fveq2 6191 . . . . . . . . 9  |-  ( j  =  ( k  - 
1 )  ->  (
( S  Dn
( S  _D  F
) ) `  j
)  =  ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) )
135134fveq1d 6193 . . . . . . . 8  |-  ( j  =  ( k  - 
1 )  ->  (
( ( S  Dn ( S  _D  F ) ) `  j ) `  B
)  =  ( ( ( S  Dn
( S  _D  F
) ) `  (
k  -  1 ) ) `  B ) )
136 fveq2 6191 . . . . . . . 8  |-  ( j  =  ( k  - 
1 )  ->  ( ! `  j )  =  ( ! `  ( k  -  1 ) ) )
137135, 136oveq12d 6668 . . . . . . 7  |-  ( j  =  ( k  - 
1 )  ->  (
( ( ( S  Dn ( S  _D  F ) ) `
 j ) `  B )  /  ( ! `  j )
)  =  ( ( ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) `  B
)  /  ( ! `
 ( k  - 
1 ) ) ) )
138 oveq2 6658 . . . . . . 7  |-  ( j  =  ( k  - 
1 )  ->  (
( x  -  B
) ^ j )  =  ( ( x  -  B ) ^
( k  -  1 ) ) )
139137, 138oveq12d 6668 . . . . . 6  |-  ( j  =  ( k  - 
1 )  ->  (
( ( ( ( S  Dn ( S  _D  F ) ) `  j ) `
 B )  / 
( ! `  j
) )  x.  (
( x  -  B
) ^ j ) )  =  ( ( ( ( ( S  Dn ( S  _D  F ) ) `
 ( k  - 
1 ) ) `  B )  /  ( ! `  ( k  -  1 ) ) )  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )
140110, 111, 113, 133, 139fsumshft 14512 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ j  e.  ( 0 ... N
) ( ( ( ( ( S  Dn ( S  _D  F ) ) `  j ) `  B
)  /  ( ! `
 j ) )  x.  ( ( x  -  B ) ^
j ) )  = 
sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( ( ( S  Dn
( S  _D  F
) ) `  (
k  -  1 ) ) `  B )  /  ( ! `  ( k  -  1 ) ) )  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) )
141 elfznn 12370 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( N  +  1 ) )  ->  k  e.  NN )
142141adantl 482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  k  e.  NN )
143142nnne0d 11065 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  k  =/=  0 )
144 ifnefalse 4098 . . . . . . . . . 10  |-  ( k  =/=  0  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) )
145143, 144syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )  =  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) )
146145oveq2d 6666 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) )  =  ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) )
147 simpll 790 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ph )
148 1eluzge0 11732 . . . . . . . . . . . . 13  |-  1  e.  ( ZZ>= `  0 )
149 fzss1 12380 . . . . . . . . . . . . 13  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) ) )
150148, 149ax-mp 5 . . . . . . . . . . . 12  |-  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
151150sseli 3599 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( N  +  1 ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
152151adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
153147, 152, 43syl2anc 693 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  CC )
154142nncnd 11036 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  k  e.  CC )
155 simplr 792 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  x  e.  CC )
15655ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  B  e.  CC )
157155, 156subcld 10392 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
x  -  B )  e.  CC )
158142, 70syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
159157, 158expcld 13008 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( x  -  B
) ^ ( k  -  1 ) )  e.  CC )
160153, 154, 159mulassd 10063 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  k )  x.  (
( x  -  B
) ^ ( k  -  1 ) ) )  =  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) ) )
161 facp1 13065 . . . . . . . . . . . . 13  |-  ( ( k  -  1 )  e.  NN0  ->  ( ! `
 ( ( k  -  1 )  +  1 ) )  =  ( ( ! `  ( k  -  1 ) )  x.  (
( k  -  1 )  +  1 ) ) )
162158, 161syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ! `  ( (
k  -  1 )  +  1 ) )  =  ( ( ! `
 ( k  - 
1 ) )  x.  ( ( k  - 
1 )  +  1 ) ) )
163 1cnd 10056 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  1  e.  CC )
164154, 163npcand 10396 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( k  -  1 )  +  1 )  =  k )
165164fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ! `  ( (
k  -  1 )  +  1 ) )  =  ( ! `  k ) )
166164oveq2d 6666 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ! `  (
k  -  1 ) )  x.  ( ( k  -  1 )  +  1 ) )  =  ( ( ! `
 ( k  - 
1 ) )  x.  k ) )
167162, 165, 1663eqtr3d 2664 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ! `  k )  =  ( ( ! `
 ( k  - 
1 ) )  x.  k ) )
168167oveq2d 6666 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  x.  k )  /  ( ! `  k )
)  =  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  x.  k
)  /  ( ( ! `  ( k  -  1 ) )  x.  k ) ) )
16923nn0cnd 11353 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  k  e.  CC )
17038, 169, 41, 42div23d 10838 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  x.  k )  /  ( ! `  k )
)  =  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  k ) )
171147, 152, 170syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  x.  k )  /  ( ! `  k )
)  =  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  k ) )
172147, 152, 38syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( S  Dn F ) `  k ) `  B
)  e.  CC )
173 faccl 13070 . . . . . . . . . . . . . 14  |-  ( ( k  -  1 )  e.  NN0  ->  ( ! `
 ( k  - 
1 ) )  e.  NN )
174158, 173syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ! `  ( k  -  1 ) )  e.  NN )
175174nncnd 11036 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ! `  ( k  -  1 ) )  e.  CC )
176174nnne0d 11065 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( ! `  ( k  -  1 ) )  =/=  0 )
177172, 175, 154, 176, 143divcan5rd 10828 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  x.  k )  /  (
( ! `  (
k  -  1 ) )  x.  k ) )  =  ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 ( k  - 
1 ) ) ) )
17813ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  S  e.  { RR ,  CC } )
17920ad2antrr 762 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  F  e.  ( CC  ^pm  S
) )
180118a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  1  e.  NN0 )
181 dvnadd 23692 . . . . . . . . . . . . . . 15  |-  ( ( ( S  e.  { RR ,  CC }  /\  F  e.  ( CC  ^pm 
S ) )  /\  ( 1  e.  NN0  /\  ( k  -  1 )  e.  NN0 )
)  ->  ( ( S  Dn ( ( S  Dn F ) `  1 ) ) `  ( k  -  1 ) )  =  ( ( S  Dn F ) `
 ( 1  +  ( k  -  1 ) ) ) )
182178, 179, 180, 158, 181syl22anc 1327 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( S  Dn
( ( S  Dn F ) ` 
1 ) ) `  ( k  -  1 ) )  =  ( ( S  Dn
F ) `  (
1  +  ( k  -  1 ) ) ) )
183123ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( S  Dn
F ) `  1
)  =  ( S  _D  F ) )
184183oveq2d 6666 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( S  Dn ( ( S  Dn F ) `  1 ) )  =  ( S  Dn ( S  _D  F ) ) )
185184fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( S  Dn
( ( S  Dn F ) ` 
1 ) ) `  ( k  -  1 ) )  =  ( ( S  Dn
( S  _D  F
) ) `  (
k  -  1 ) ) )
186163, 154pncan3d 10395 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
1  +  ( k  -  1 ) )  =  k )
187186fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( S  Dn
F ) `  (
1  +  ( k  -  1 ) ) )  =  ( ( S  Dn F ) `  k ) )
188182, 185, 1873eqtr3rd 2665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( S  Dn
F ) `  k
)  =  ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) )
189188fveq1d 6193 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( S  Dn F ) `  k ) `  B
)  =  ( ( ( S  Dn
( S  _D  F
) ) `  (
k  -  1 ) ) `  B ) )
190189oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  ( k  -  1 ) ) )  =  ( ( ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) `  B
)  /  ( ! `
 ( k  - 
1 ) ) ) )
191177, 190eqtrd 2656 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  x.  k )  /  (
( ! `  (
k  -  1 ) )  x.  k ) )  =  ( ( ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) `  B
)  /  ( ! `
 ( k  - 
1 ) ) ) )
192168, 171, 1913eqtr3d 2664 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  k
)  =  ( ( ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) `  B
)  /  ( ! `
 ( k  - 
1 ) ) ) )
193192oveq1d 6665 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  k )  x.  (
( x  -  B
) ^ ( k  -  1 ) ) )  =  ( ( ( ( ( S  Dn ( S  _D  F ) ) `
 ( k  - 
1 ) ) `  B )  /  ( ! `  ( k  -  1 ) ) )  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )
194146, 160, 1933eqtr2d 2662 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) )  =  ( ( ( ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) `
 B )  / 
( ! `  (
k  -  1 ) ) )  x.  (
( x  -  B
) ^ ( k  -  1 ) ) ) )
195194sumeq2dv 14433 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) ) )  =  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn
( S  _D  F
) ) `  (
k  -  1 ) ) `  B )  /  ( ! `  ( k  -  1 ) ) )  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) )
196 0p1e1 11132 . . . . . . . 8  |-  ( 0  +  1 )  =  1
197196oveq1i 6660 . . . . . . 7  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
198197sumeq1i 14428 . . . . . 6  |-  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( ( ( S  Dn ( S  _D  F ) ) `  ( k  -  1 ) ) `  B
)  /  ( ! `
 ( k  - 
1 ) ) )  x.  ( ( x  -  B ) ^
( k  -  1 ) ) )  = 
sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn
( S  _D  F
) ) `  (
k  -  1 ) ) `  B )  /  ( ! `  ( k  -  1 ) ) )  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) )
199195, 198syl6eqr 2674 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) ) )  =  sum_ k  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ( ( ( ( ( S  Dn
( S  _D  F
) ) `  (
k  -  1 ) ) `  B )  /  ( ! `  ( k  -  1 ) ) )  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) )
200150a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) ) )
20178an32s 846 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )  e.  CC )
202151, 201sylan2 491 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) )  e.  CC )
203153, 202mulcld 10060 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 1 ... ( N  +  1 ) ) )  ->  (
( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) )  e.  CC )
204 eldif 3584 . . . . . . . . . 10  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 1 ... ( N  +  1 ) ) )  <->  ( k  e.  ( 0 ... ( N  +  1 ) )  /\  -.  k  e.  ( 1 ... ( N  +  1 ) ) ) )
20568biimpri 218 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN0  /\  k  =/=  0 )  -> 
k  e.  NN )
20622, 205sylan 488 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  ( 0 ... ( N  + 
1 ) )  /\  k  =/=  0 )  -> 
k  e.  NN )
207 nnuz 11723 . . . . . . . . . . . . . . . 16  |-  NN  =  ( ZZ>= `  1 )
208206, 207syl6eleq 2711 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ( 0 ... ( N  + 
1 ) )  /\  k  =/=  0 )  -> 
k  e.  ( ZZ>= ` 
1 ) )
209 elfzuz3 12339 . . . . . . . . . . . . . . . 16  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  k
) )
210209adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  ( 0 ... ( N  + 
1 ) )  /\  k  =/=  0 )  -> 
( N  +  1 )  e.  ( ZZ>= `  k ) )
211 elfzuzb 12336 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( 1 ... ( N  +  1 ) )  <->  ( k  e.  ( ZZ>= `  1 )  /\  ( N  +  1 )  e.  ( ZZ>= `  k ) ) )
212208, 210, 211sylanbrc 698 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ( 0 ... ( N  + 
1 ) )  /\  k  =/=  0 )  -> 
k  e.  ( 1 ... ( N  + 
1 ) ) )
213212ex 450 . . . . . . . . . . . . 13  |-  ( k  e.  ( 0 ... ( N  +  1 ) )  ->  (
k  =/=  0  -> 
k  e.  ( 1 ... ( N  + 
1 ) ) ) )
214213adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
k  =/=  0  -> 
k  e.  ( 1 ... ( N  + 
1 ) ) ) )
215214necon1bd 2812 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( -.  k  e.  (
1 ... ( N  + 
1 ) )  -> 
k  =  0 ) )
216215impr 649 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  CC )  /\  (
k  e.  ( 0 ... ( N  + 
1 ) )  /\  -.  k  e.  (
1 ... ( N  + 
1 ) ) ) )  ->  k  = 
0 )
217204, 216sylan2b 492 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
1 ... ( N  + 
1 ) ) ) )  ->  k  = 
0 )
218217iftrued 4094 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
1 ... ( N  + 
1 ) ) ) )  ->  if (
k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) )  =  0 )
219218oveq2d 6666 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
1 ... ( N  + 
1 ) ) ) )  ->  ( (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) ) )  =  ( ( ( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  0 ) )
220 eldifi 3732 . . . . . . . . 9  |-  ( k  e.  ( ( 0 ... ( N  + 
1 ) )  \ 
( 1 ... ( N  +  1 ) ) )  ->  k  e.  ( 0 ... ( N  +  1 ) ) )
22143adantlr 751 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  e.  CC )
222220, 221sylan2 491 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
1 ... ( N  + 
1 ) ) ) )  ->  ( (
( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  e.  CC )
223222mul01d 10235 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
1 ... ( N  + 
1 ) ) ) )  ->  ( (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  0 )  =  0 )
224219, 223eqtrd 2656 . . . . . 6  |-  ( ( ( ph  /\  x  e.  CC )  /\  k  e.  ( ( 0 ... ( N  +  1 ) )  \  (
1 ... ( N  + 
1 ) ) ) )  ->  ( (
( ( ( S  Dn F ) `
 k ) `  B )  /  ( ! `  k )
)  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^
( k  -  1 ) ) ) ) )  =  0 )
225 fzfid 12772 . . . . . 6  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0 ... ( N  + 
1 ) )  e. 
Fin )
226200, 203, 224, 225fsumss 14456 . . . . 5  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 1 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) ) )  =  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  (
( x  -  B
) ^ ( k  -  1 ) ) ) ) ) )
227140, 199, 2263eqtr2rd 2663 . . . 4  |-  ( (
ph  /\  x  e.  CC )  ->  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `  B
)  /  ( ! `
 k ) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ (
k  -  1 ) ) ) ) )  =  sum_ j  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
( S  _D  F
) ) `  j
) `  B )  /  ( ! `  j ) )  x.  ( ( x  -  B ) ^ j
) ) )
228227mpteq2dva 4744 . . 3  |-  ( ph  ->  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  if ( k  =  0 ,  0 ,  ( k  x.  ( ( x  -  B ) ^ ( k  - 
1 ) ) ) ) ) )  =  ( x  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( ( ( S  Dn ( S  _D  F ) ) `  j ) `
 B )  / 
( ! `  j
) )  x.  (
( x  -  B
) ^ j ) ) ) )
229109, 228eqtrd 2656 . 2  |-  ( ph  ->  ( CC  _D  (
x  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) )  =  ( x  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( ( ( S  Dn ( S  _D  F ) ) `  j ) `
 B )  / 
( ! `  j
) )  x.  (
( x  -  B
) ^ j ) ) ) )
230 eqid 2622 . . . 4  |-  ( ( N  +  1 ) ( S Tayl  F ) B )  =  ( ( N  +  1 ) ( S Tayl  F
) B )
23113, 17, 18, 29, 35, 230taylpfval 24119 . . 3  |-  ( ph  ->  ( ( N  + 
1 ) ( S Tayl 
F ) B )  =  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  +  1 ) ) ( ( ( ( ( S  Dn
F ) `  k
) `  B )  /  ( ! `  k ) )  x.  ( ( x  -  B ) ^ k
) ) ) )
232231oveq2d 6666 . 2  |-  ( ph  ->  ( CC  _D  (
( N  +  1 ) ( S Tayl  F
) B ) )  =  ( CC  _D  ( x  e.  CC  |->  sum_ k  e.  ( 0 ... ( N  + 
1 ) ) ( ( ( ( ( S  Dn F ) `  k ) `
 B )  / 
( ! `  k
) )  x.  (
( x  -  B
) ^ k ) ) ) ) )
233 eqid 2622 . . 3  |-  ( N ( S Tayl  ( S  _D  F ) ) B )  =  ( N ( S Tayl  ( S  _D  F ) ) B )
23413, 115, 117, 27, 132, 233taylpfval 24119 . 2  |-  ( ph  ->  ( N ( S Tayl  ( S  _D  F
) ) B )  =  ( x  e.  CC  |->  sum_ j  e.  ( 0 ... N ) ( ( ( ( ( S  Dn
( S  _D  F
) ) `  j
) `  B )  /  ( ! `  j ) )  x.  ( ( x  -  B ) ^ j
) ) ) )
235229, 232, 2343eqtr4d 2666 1  |-  ( ph  ->  ( CC  _D  (
( N  +  1 ) ( S Tayl  F
) B ) )  =  ( N ( S Tayl  ( S  _D  F ) ) B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   {cpr 4179    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^pm cpm 7858   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266    / cdiv 10684   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   [,]cicc 12178   ...cfz 12326   ^cexp 12860   !cfa 13060   sum_csu 14416   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746  TopOnctopon 20715    _D cdv 23627    Dncdvn 23628   Tayl ctayl 24107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-fac 13061  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tsms 21930  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631  df-dvn 23632  df-tayl 24109
This theorem is referenced by:  dvntaylp  24125
  Copyright terms: Public domain W3C validator