Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ghomdiv Structured version   Visualization version   Unicode version

Theorem ghomdiv 33691
Description: Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
ghomdiv.1  |-  X  =  ran  G
ghomdiv.2  |-  D  =  (  /g  `  G
)
ghomdiv.3  |-  C  =  (  /g  `  H
)
Assertion
Ref Expression
ghomdiv  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) )

Proof of Theorem ghomdiv
StepHypRef Expression
1 simpl2 1065 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  ->  H  e.  GrpOp )
2 ghomdiv.1 . . . . . . 7  |-  X  =  ran  G
3 eqid 2622 . . . . . . 7  |-  ran  H  =  ran  H
42, 3ghomf 33689 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H ) )  ->  F : X --> ran  H )
54ffvelrnda 6359 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  A  e.  X )  ->  ( F `  A )  e.  ran  H )
65adantrr 753 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  A
)  e.  ran  H
)
74ffvelrnda 6359 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  B  e.  X )  ->  ( F `  B )  e.  ran  H )
87adantrl 752 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  B
)  e.  ran  H
)
9 ghomdiv.3 . . . . 5  |-  C  =  (  /g  `  H
)
103, 9grponpcan 27397 . . . 4  |-  ( ( H  e.  GrpOp  /\  ( F `  A )  e.  ran  H  /\  ( F `  B )  e.  ran  H )  -> 
( ( ( F `
 A ) C ( F `  B
) ) H ( F `  B ) )  =  ( F `
 A ) )
111, 6, 8, 10syl3anc 1326 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( ( F `
 A ) C ( F `  B
) ) H ( F `  B ) )  =  ( F `
 A ) )
12 ghomdiv.2 . . . . . . 7  |-  D  =  (  /g  `  G
)
132, 12grponpcan 27397 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  (
( A D B ) G B )  =  A )
14133expb 1266 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( A D B ) G B )  =  A )
15143ad2antl1 1223 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( A D B ) G B )  =  A )
1615fveq2d 6195 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( F `
 A ) )
172, 12grpodivcl 27393 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X  /\  B  e.  X )  ->  ( A D B )  e.  X )
18173expb 1266 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A D B )  e.  X
)
19 simprr 796 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  B  e.  X )
2018, 19jca 554 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( ( A D B )  e.  X  /\  B  e.  X ) )
21203ad2antl1 1223 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( A D B )  e.  X  /\  B  e.  X
) )
222ghomlinOLD 33687 . . . . 5  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( ( A D B )  e.  X  /\  B  e.  X ) )  -> 
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( F `  ( ( A D B ) G B ) ) )
2322eqcomd 2628 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( ( A D B )  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( ( F `  ( A D B ) ) H ( F `  B ) ) )
2421, 23syldan 487 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  (
( A D B ) G B ) )  =  ( ( F `  ( A D B ) ) H ( F `  B ) ) )
2511, 16, 243eqtr2rd 2663 . 2  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `  B
) ) )
26183ad2antl1 1223 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  e.  X )
274ffvelrnda 6359 . . . 4  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A D B )  e.  X
)  ->  ( F `  ( A D B ) )  e.  ran  H )
2826, 27syldan 487 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  e.  ran  H )
293, 9grpodivcl 27393 . . . 4  |-  ( ( H  e.  GrpOp  /\  ( F `  A )  e.  ran  H  /\  ( F `  B )  e.  ran  H )  -> 
( ( F `  A ) C ( F `  B ) )  e.  ran  H
)
301, 6, 8, 29syl3anc 1326 . . 3  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( F `  A ) C ( F `  B ) )  e.  ran  H
)
313grporcan 27372 . . 3  |-  ( ( H  e.  GrpOp  /\  (
( F `  ( A D B ) )  e.  ran  H  /\  ( ( F `  A ) C ( F `  B ) )  e.  ran  H  /\  ( F `  B
)  e.  ran  H
) )  ->  (
( ( F `  ( A D B ) ) H ( F `
 B ) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `  B
) )  <->  ( F `  ( A D B ) )  =  ( ( F `  A
) C ( F `
 B ) ) ) )
321, 28, 30, 8, 31syl13anc 1328 . 2  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( ( ( F `
 ( A D B ) ) H ( F `  B
) )  =  ( ( ( F `  A ) C ( F `  B ) ) H ( F `
 B ) )  <-> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) ) )
3325, 32mpbid 222 1  |-  ( ( ( G  e.  GrpOp  /\  H  e.  GrpOp  /\  F  e.  ( G GrpOpHom  H )
)  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A D B ) )  =  ( ( F `
 A ) C ( F `  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   ran crn 5115   ` cfv 5888  (class class class)co 6650   GrpOpcgr 27343    /g cgs 27346   GrpOpHom cghomOLD 33682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ghomOLD 33683
This theorem is referenced by:  grpokerinj  33692  rngohomsub  33772
  Copyright terms: Public domain W3C validator