MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvallem2 Structured version   Visualization version   Unicode version

Theorem gsumvallem2 17372
Description: Lemma for properties of the set of identities of  G. The set of identities of a monoid is exactly the unique identity element. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumvallem2.b  |-  B  =  ( Base `  G
)
gsumvallem2.z  |-  .0.  =  ( 0g `  G )
gsumvallem2.p  |-  .+  =  ( +g  `  G )
gsumvallem2.o  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
Assertion
Ref Expression
gsumvallem2  |-  ( G  e.  Mnd  ->  O  =  {  .0.  } )
Distinct variable groups:    x, y, B    x, G, y    x,  .+ , y    x,  .0. , y
Allowed substitution hints:    O( x, y)

Proof of Theorem gsumvallem2
StepHypRef Expression
1 gsumvallem2.b . . 3  |-  B  =  ( Base `  G
)
2 gsumvallem2.z . . 3  |-  .0.  =  ( 0g `  G )
3 gsumvallem2.p . . 3  |-  .+  =  ( +g  `  G )
4 gsumvallem2.o . . 3  |-  O  =  { x  e.  B  |  A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y ) }
51, 2, 3, 4mgmidsssn0 17269 . 2  |-  ( G  e.  Mnd  ->  O  C_ 
{  .0.  } )
61, 2mndidcl 17308 . . . 4  |-  ( G  e.  Mnd  ->  .0.  e.  B )
71, 3, 2mndlrid 17310 . . . . 5  |-  ( ( G  e.  Mnd  /\  y  e.  B )  ->  ( (  .0.  .+  y )  =  y  /\  ( y  .+  .0.  )  =  y
) )
87ralrimiva 2966 . . . 4  |-  ( G  e.  Mnd  ->  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y 
.+  .0.  )  =  y ) )
9 oveq1 6657 . . . . . . . 8  |-  ( x  =  .0.  ->  (
x  .+  y )  =  (  .0.  .+  y
) )
109eqeq1d 2624 . . . . . . 7  |-  ( x  =  .0.  ->  (
( x  .+  y
)  =  y  <->  (  .0.  .+  y )  =  y ) )
11 oveq2 6658 . . . . . . . 8  |-  ( x  =  .0.  ->  (
y  .+  x )  =  ( y  .+  .0.  ) )
1211eqeq1d 2624 . . . . . . 7  |-  ( x  =  .0.  ->  (
( y  .+  x
)  =  y  <->  ( y  .+  .0.  )  =  y ) )
1310, 12anbi12d 747 . . . . . 6  |-  ( x  =  .0.  ->  (
( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  <->  ( (  .0.  .+  y )  =  y  /\  ( y  .+  .0.  )  =  y
) ) )
1413ralbidv 2986 . . . . 5  |-  ( x  =  .0.  ->  ( A. y  e.  B  ( ( x  .+  y )  =  y  /\  ( y  .+  x )  =  y )  <->  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y  .+  .0.  )  =  y
) ) )
1514, 4elrab2 3366 . . . 4  |-  (  .0. 
e.  O  <->  (  .0.  e.  B  /\  A. y  e.  B  ( (  .0.  .+  y )  =  y  /\  ( y 
.+  .0.  )  =  y ) ) )
166, 8, 15sylanbrc 698 . . 3  |-  ( G  e.  Mnd  ->  .0.  e.  O )
1716snssd 4340 . 2  |-  ( G  e.  Mnd  ->  {  .0.  } 
C_  O )
185, 17eqssd 3620 1  |-  ( G  e.  Mnd  ->  O  =  {  .0.  } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   {csn 4177   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295
This theorem is referenced by:  gsumz  17374  gsumval3a  18304
  Copyright terms: Public domain W3C validator