Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlatexch4 Structured version   Visualization version   Unicode version

Theorem hlatexch4 34767
Description: Exchange 2 atoms. (Contributed by NM, 13-May-2013.)
Hypotheses
Ref Expression
hlatexch4.j  |-  .\/  =  ( join `  K )
hlatexch4.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlatexch4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( P  .\/  R )  =  ( Q  .\/  S
) )

Proof of Theorem hlatexch4
StepHypRef Expression
1 simp11 1091 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  K  e.  HL )
2 simp2l 1087 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  R  e.  A )
3 simp2r 1088 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  S  e.  A )
4 eqid 2622 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
5 hlatexch4.j . . . . . . . 8  |-  .\/  =  ( join `  K )
6 hlatexch4.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
74, 5, 6hlatlej2 34662 . . . . . . 7  |-  ( ( K  e.  HL  /\  R  e.  A  /\  S  e.  A )  ->  S ( le `  K ) ( R 
.\/  S ) )
81, 2, 3, 7syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  S
( le `  K
) ( R  .\/  S ) )
9 simp33 1099 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( P  .\/  Q )  =  ( R  .\/  S
) )
108, 9breqtrrd 4681 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  S
( le `  K
) ( P  .\/  Q ) )
11 simp12 1092 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  P  e.  A )
12 simp13 1093 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  Q  e.  A )
13 simp32 1098 . . . . . . 7  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  Q  =/=  S )
1413necomd 2849 . . . . . 6  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  S  =/=  Q )
154, 5, 6hlatexch2 34682 . . . . . 6  |-  ( ( K  e.  HL  /\  ( S  e.  A  /\  P  e.  A  /\  Q  e.  A
)  /\  S  =/=  Q )  ->  ( S
( le `  K
) ( P  .\/  Q )  ->  P ( le `  K ) ( S  .\/  Q ) ) )
161, 3, 11, 12, 14, 15syl131anc 1339 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( S ( le `  K ) ( P 
.\/  Q )  ->  P ( le `  K ) ( S 
.\/  Q ) ) )
1710, 16mpd 15 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  P
( le `  K
) ( S  .\/  Q ) )
185, 6hlatjcom 34654 . . . . 5  |-  ( ( K  e.  HL  /\  S  e.  A  /\  Q  e.  A )  ->  ( S  .\/  Q
)  =  ( Q 
.\/  S ) )
191, 3, 12, 18syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( S  .\/  Q )  =  ( Q  .\/  S
) )
2017, 19breqtrd 4679 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  P
( le `  K
) ( Q  .\/  S ) )
214, 5, 6hlatlej2 34662 . . . . . 6  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  Q ( le `  K ) ( P 
.\/  Q ) )
221, 11, 12, 21syl3anc 1326 . . . . 5  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  Q
( le `  K
) ( P  .\/  Q ) )
2322, 9breqtrd 4679 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  Q
( le `  K
) ( R  .\/  S ) )
244, 5, 6hlatexch2 34682 . . . . 5  |-  ( ( K  e.  HL  /\  ( Q  e.  A  /\  R  e.  A  /\  S  e.  A
)  /\  Q  =/=  S )  ->  ( Q
( le `  K
) ( R  .\/  S )  ->  R ( le `  K ) ( Q  .\/  S ) ) )
251, 12, 2, 3, 13, 24syl131anc 1339 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( Q ( le `  K ) ( R 
.\/  S )  ->  R ( le `  K ) ( Q 
.\/  S ) ) )
2623, 25mpd 15 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  R
( le `  K
) ( Q  .\/  S ) )
27 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
281, 27syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  K  e.  Lat )
29 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
3029, 6atbase 34576 . . . . 5  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
3111, 30syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  P  e.  ( Base `  K
) )
3229, 6atbase 34576 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
332, 32syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  R  e.  ( Base `  K
) )
3429, 5, 6hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  Q  e.  A  /\  S  e.  A )  ->  ( Q  .\/  S
)  e.  ( Base `  K ) )
351, 12, 3, 34syl3anc 1326 . . . 4  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( Q  .\/  S )  e.  ( Base `  K
) )
3629, 4, 5latjle12 17062 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  ( Q  .\/  S )  e.  ( Base `  K
) ) )  -> 
( ( P ( le `  K ) ( Q  .\/  S
)  /\  R ( le `  K ) ( Q  .\/  S ) )  <->  ( P  .\/  R ) ( le `  K ) ( Q 
.\/  S ) ) )
3728, 31, 33, 35, 36syl13anc 1328 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  (
( P ( le
`  K ) ( Q  .\/  S )  /\  R ( le
`  K ) ( Q  .\/  S ) )  <->  ( P  .\/  R ) ( le `  K ) ( Q 
.\/  S ) ) )
3820, 26, 37mpbi2and 956 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( P  .\/  R ) ( le `  K ) ( Q  .\/  S
) )
39 simp31 1097 . . 3  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  P  =/=  R )
404, 5, 6ps-1 34763 . . 3  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  R  e.  A  /\  P  =/=  R
)  /\  ( Q  e.  A  /\  S  e.  A ) )  -> 
( ( P  .\/  R ) ( le `  K ) ( Q 
.\/  S )  <->  ( P  .\/  R )  =  ( Q  .\/  S ) ) )
411, 11, 2, 39, 12, 3, 40syl132anc 1344 . 2  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  (
( P  .\/  R
) ( le `  K ) ( Q 
.\/  S )  <->  ( P  .\/  R )  =  ( Q  .\/  S ) ) )
4238, 41mpbid 222 1  |-  ( ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  /\  ( R  e.  A  /\  S  e.  A
)  /\  ( P  =/=  R  /\  Q  =/= 
S  /\  ( P  .\/  Q )  =  ( R  .\/  S ) ) )  ->  ( P  .\/  R )  =  ( Q  .\/  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  cdlemg18a  35966
  Copyright terms: Public domain W3C validator