| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hmopco | Structured version Visualization version Unicode version | ||
| Description: The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hmopco |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf 28733 |
. . . 4
| |
| 2 | hmopf 28733 |
. . . 4
| |
| 3 | fco 6058 |
. . . 4
| |
| 4 | 1, 2, 3 | syl2an 494 |
. . 3
|
| 5 | 4 | 3adant3 1081 |
. 2
|
| 6 | fvco3 6275 |
. . . . . . . . . 10
| |
| 7 | 2, 6 | sylan 488 |
. . . . . . . . 9
|
| 8 | 7 | oveq2d 6666 |
. . . . . . . 8
|
| 9 | 8 | ad2ant2l 782 |
. . . . . . 7
|
| 10 | simpll 790 |
. . . . . . . 8
| |
| 11 | simprl 794 |
. . . . . . . 8
| |
| 12 | 2 | ffvelrnda 6359 |
. . . . . . . . 9
|
| 13 | 12 | ad2ant2l 782 |
. . . . . . . 8
|
| 14 | hmop 28781 |
. . . . . . . 8
| |
| 15 | 10, 11, 13, 14 | syl3anc 1326 |
. . . . . . 7
|
| 16 | simplr 792 |
. . . . . . . 8
| |
| 17 | 1 | ffvelrnda 6359 |
. . . . . . . . 9
|
| 18 | 17 | ad2ant2r 783 |
. . . . . . . 8
|
| 19 | simprr 796 |
. . . . . . . 8
| |
| 20 | hmop 28781 |
. . . . . . . 8
| |
| 21 | 16, 18, 19, 20 | syl3anc 1326 |
. . . . . . 7
|
| 22 | 9, 15, 21 | 3eqtrd 2660 |
. . . . . 6
|
| 23 | fvco3 6275 |
. . . . . . . . 9
| |
| 24 | 1, 23 | sylan 488 |
. . . . . . . 8
|
| 25 | 24 | oveq1d 6665 |
. . . . . . 7
|
| 26 | 25 | ad2ant2r 783 |
. . . . . 6
|
| 27 | 22, 26 | eqtr4d 2659 |
. . . . 5
|
| 28 | 27 | 3adantl3 1219 |
. . . 4
|
| 29 | fveq1 6190 |
. . . . . . 7
| |
| 30 | 29 | oveq1d 6665 |
. . . . . 6
|
| 31 | 30 | 3ad2ant3 1084 |
. . . . 5
|
| 32 | 31 | adantr 481 |
. . . 4
|
| 33 | 28, 32 | eqtr4d 2659 |
. . 3
|
| 34 | 33 | ralrimivva 2971 |
. 2
|
| 35 | elhmop 28732 |
. 2
| |
| 36 | 5, 34, 35 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-hilex 27856 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-map 7859 df-hmop 28703 |
| This theorem is referenced by: leopsq 28988 opsqrlem4 29002 opsqrlem6 29004 |
| Copyright terms: Public domain | W3C validator |