MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphdis Structured version   Visualization version   Unicode version

Theorem hmphdis 21599
Description: Homeomorphisms preserve topological discretion. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
hmphdis.1  |-  X  = 
U. J
Assertion
Ref Expression
hmphdis  |-  ( J  ~=  ~P A  ->  J  =  ~P X
)

Proof of Theorem hmphdis
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwuni 4474 . . . 4  |-  J  C_  ~P U. J
2 hmphdis.1 . . . . 5  |-  X  = 
U. J
32pweqi 4162 . . . 4  |-  ~P X  =  ~P U. J
41, 3sseqtr4i 3638 . . 3  |-  J  C_  ~P X
54a1i 11 . 2  |-  ( J  ~=  ~P A  ->  J  C_  ~P X )
6 hmph 21579 . . 3  |-  ( J  ~=  ~P A  <->  ( J Homeo ~P A )  =/=  (/) )
7 n0 3931 . . . 4  |-  ( ( J Homeo ~P A )  =/=  (/)  <->  E. f  f  e.  ( J Homeo ~P A
) )
8 elpwi 4168 . . . . . . 7  |-  ( x  e.  ~P X  ->  x  C_  X )
9 imassrn 5477 . . . . . . . . . . 11  |-  ( f
" x )  C_  ran  f
10 unipw 4918 . . . . . . . . . . . . . . 15  |-  U. ~P A  =  A
1110eqcomi 2631 . . . . . . . . . . . . . 14  |-  A  = 
U. ~P A
122, 11hmeof1o 21567 . . . . . . . . . . . . 13  |-  ( f  e.  ( J Homeo ~P A )  ->  f : X -1-1-onto-> A )
13 f1of 6137 . . . . . . . . . . . . 13  |-  ( f : X -1-1-onto-> A  ->  f : X
--> A )
14 frn 6053 . . . . . . . . . . . . 13  |-  ( f : X --> A  ->  ran  f  C_  A )
1512, 13, 143syl 18 . . . . . . . . . . . 12  |-  ( f  e.  ( J Homeo ~P A )  ->  ran  f  C_  A )
1615adantr 481 . . . . . . . . . . 11  |-  ( ( f  e.  ( J
Homeo ~P A )  /\  x  C_  X )  ->  ran  f  C_  A )
179, 16syl5ss 3614 . . . . . . . . . 10  |-  ( ( f  e.  ( J
Homeo ~P A )  /\  x  C_  X )  -> 
( f " x
)  C_  A )
18 vex 3203 . . . . . . . . . . . 12  |-  f  e. 
_V
1918imaex 7104 . . . . . . . . . . 11  |-  ( f
" x )  e. 
_V
2019elpw 4164 . . . . . . . . . 10  |-  ( ( f " x )  e.  ~P A  <->  ( f " x )  C_  A )
2117, 20sylibr 224 . . . . . . . . 9  |-  ( ( f  e.  ( J
Homeo ~P A )  /\  x  C_  X )  -> 
( f " x
)  e.  ~P A
)
222hmeoopn 21569 . . . . . . . . 9  |-  ( ( f  e.  ( J
Homeo ~P A )  /\  x  C_  X )  -> 
( x  e.  J  <->  ( f " x )  e.  ~P A ) )
2321, 22mpbird 247 . . . . . . . 8  |-  ( ( f  e.  ( J
Homeo ~P A )  /\  x  C_  X )  ->  x  e.  J )
2423ex 450 . . . . . . 7  |-  ( f  e.  ( J Homeo ~P A )  ->  (
x  C_  X  ->  x  e.  J ) )
258, 24syl5 34 . . . . . 6  |-  ( f  e.  ( J Homeo ~P A )  ->  (
x  e.  ~P X  ->  x  e.  J ) )
2625ssrdv 3609 . . . . 5  |-  ( f  e.  ( J Homeo ~P A )  ->  ~P X  C_  J )
2726exlimiv 1858 . . . 4  |-  ( E. f  f  e.  ( J Homeo ~P A )  ->  ~P X  C_  J )
287, 27sylbi 207 . . 3  |-  ( ( J Homeo ~P A )  =/=  (/)  ->  ~P X  C_  J )
296, 28sylbi 207 . 2  |-  ( J  ~=  ~P A  ->  ~P X  C_  J )
305, 29eqssd 3620 1  |-  ( J  ~=  ~P A  ->  J  =  ~P X
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   ran crn 5115   "cima 5117   -->wf 5884   -1-1-onto->wf1o 5887  (class class class)co 6650   Homeochmeo 21556    ~= chmph 21557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-1o 7560  df-map 7859  df-top 20699  df-topon 20716  df-cn 21031  df-hmeo 21558  df-hmph 21559
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator