| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccdificc | Structured version Visualization version Unicode version | ||
| Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| iccdificc.a |
|
| iccdificc.b |
|
| iccdificc.c |
|
| iccdificc.4 |
|
| Ref | Expression |
|---|---|
| iccdificc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccdificc.b |
. . . . . 6
| |
| 2 | 1 | adantr 481 |
. . . . 5
|
| 3 | iccdificc.c |
. . . . . 6
| |
| 4 | 3 | adantr 481 |
. . . . 5
|
| 5 | iccssxr 12256 |
. . . . . . 7
| |
| 6 | eldifi 3732 |
. . . . . . 7
| |
| 7 | 5, 6 | sseldi 3601 |
. . . . . 6
|
| 8 | 7 | adantl 482 |
. . . . 5
|
| 9 | iccdificc.a |
. . . . . . . 8
| |
| 10 | 9 | ad2antrr 762 |
. . . . . . 7
|
| 11 | 2 | adantr 481 |
. . . . . . 7
|
| 12 | 8 | adantr 481 |
. . . . . . 7
|
| 13 | 9 | adantr 481 |
. . . . . . . . 9
|
| 14 | 6 | adantl 482 |
. . . . . . . . 9
|
| 15 | iccgelb 12230 |
. . . . . . . . 9
| |
| 16 | 13, 4, 14, 15 | syl3anc 1326 |
. . . . . . . 8
|
| 17 | 16 | adantr 481 |
. . . . . . 7
|
| 18 | simpr 477 |
. . . . . . . 8
| |
| 19 | 8, 2 | xrlenltd 10104 |
. . . . . . . . 9
|
| 20 | 19 | adantr 481 |
. . . . . . . 8
|
| 21 | 18, 20 | mpbird 247 |
. . . . . . 7
|
| 22 | 10, 11, 12, 17, 21 | eliccxrd 39753 |
. . . . . 6
|
| 23 | eldifn 3733 |
. . . . . . 7
| |
| 24 | 23 | ad2antlr 763 |
. . . . . 6
|
| 25 | 22, 24 | condan 835 |
. . . . 5
|
| 26 | iccleub 12229 |
. . . . . 6
| |
| 27 | 13, 4, 14, 26 | syl3anc 1326 |
. . . . 5
|
| 28 | 2, 4, 8, 25, 27 | eliocd 39730 |
. . . 4
|
| 29 | 28 | ralrimiva 2966 |
. . 3
|
| 30 | dfss3 3592 |
. . 3
| |
| 31 | 29, 30 | sylibr 224 |
. 2
|
| 32 | 9 | adantr 481 |
. . . . . 6
|
| 33 | 3 | adantr 481 |
. . . . . 6
|
| 34 | iocssxr 12257 |
. . . . . . . 8
| |
| 35 | id 22 |
. . . . . . . 8
| |
| 36 | 34, 35 | sseldi 3601 |
. . . . . . 7
|
| 37 | 36 | adantl 482 |
. . . . . 6
|
| 38 | 1 | adantr 481 |
. . . . . . . 8
|
| 39 | iccdificc.4 |
. . . . . . . . 9
| |
| 40 | 39 | adantr 481 |
. . . . . . . 8
|
| 41 | simpr 477 |
. . . . . . . . 9
| |
| 42 | iocgtlb 39724 |
. . . . . . . . 9
| |
| 43 | 38, 33, 41, 42 | syl3anc 1326 |
. . . . . . . 8
|
| 44 | 32, 38, 37, 40, 43 | xrlelttrd 11991 |
. . . . . . 7
|
| 45 | 32, 37, 44 | xrltled 39486 |
. . . . . 6
|
| 46 | iocleub 39725 |
. . . . . . 7
| |
| 47 | 38, 33, 41, 46 | syl3anc 1326 |
. . . . . 6
|
| 48 | 32, 33, 37, 45, 47 | eliccxrd 39753 |
. . . . 5
|
| 49 | 32, 38, 37, 43 | xrgtnelicc 39765 |
. . . . 5
|
| 50 | 48, 49 | eldifd 3585 |
. . . 4
|
| 51 | 50 | ralrimiva 2966 |
. . 3
|
| 52 | dfss3 3592 |
. . 3
| |
| 53 | 51, 52 | sylibr 224 |
. 2
|
| 54 | 31, 53 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ioc 12180 df-icc 12182 |
| This theorem is referenced by: salexct2 40557 |
| Copyright terms: Public domain | W3C validator |