Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccdificc Structured version   Visualization version   Unicode version

Theorem iccdificc 39766
Description: The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
iccdificc.a  |-  ( ph  ->  A  e.  RR* )
iccdificc.b  |-  ( ph  ->  B  e.  RR* )
iccdificc.c  |-  ( ph  ->  C  e.  RR* )
iccdificc.4  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
iccdificc  |-  ( ph  ->  ( ( A [,] C )  \  ( A [,] B ) )  =  ( B (,] C ) )

Proof of Theorem iccdificc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 iccdificc.b . . . . . 6  |-  ( ph  ->  B  e.  RR* )
21adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  B  e.  RR* )
3 iccdificc.c . . . . . 6  |-  ( ph  ->  C  e.  RR* )
43adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  C  e.  RR* )
5 iccssxr 12256 . . . . . . 7  |-  ( A [,] C )  C_  RR*
6 eldifi 3732 . . . . . . 7  |-  ( x  e.  ( ( A [,] C )  \ 
( A [,] B
) )  ->  x  e.  ( A [,] C
) )
75, 6sseldi 3601 . . . . . 6  |-  ( x  e.  ( ( A [,] C )  \ 
( A [,] B
) )  ->  x  e.  RR* )
87adantl 482 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  x  e.  RR* )
9 iccdificc.a . . . . . . . 8  |-  ( ph  ->  A  e.  RR* )
109ad2antrr 762 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  A  e.  RR* )
112adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  B  e.  RR* )
128adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  x  e.  RR* )
139adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  A  e.  RR* )
146adantl 482 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  x  e.  ( A [,] C ) )
15 iccgelb 12230 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  x  e.  ( A [,] C
) )  ->  A  <_  x )
1613, 4, 14, 15syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  A  <_  x )
1716adantr 481 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  A  <_  x )
18 simpr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  -.  B  <  x )
198, 2xrlenltd 10104 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  ( x  <_  B  <->  -.  B  <  x ) )
2019adantr 481 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  (
x  <_  B  <->  -.  B  <  x ) )
2118, 20mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  x  <_  B )
2210, 11, 12, 17, 21eliccxrd 39753 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  x  e.  ( A [,] B
) )
23 eldifn 3733 . . . . . . 7  |-  ( x  e.  ( ( A [,] C )  \ 
( A [,] B
) )  ->  -.  x  e.  ( A [,] B ) )
2423ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  /\  -.  B  <  x )  ->  -.  x  e.  ( A [,] B ) )
2522, 24condan 835 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  B  <  x )
26 iccleub 12229 . . . . . 6  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  x  e.  ( A [,] C
) )  ->  x  <_  C )
2713, 4, 14, 26syl3anc 1326 . . . . 5  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  x  <_  C )
282, 4, 8, 25, 27eliocd 39730 . . . 4  |-  ( (
ph  /\  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )  ->  x  e.  ( B (,] C ) )
2928ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  ( ( A [,] C
)  \  ( A [,] B ) ) x  e.  ( B (,] C ) )
30 dfss3 3592 . . 3  |-  ( ( ( A [,] C
)  \  ( A [,] B ) )  C_  ( B (,] C )  <->  A. x  e.  (
( A [,] C
)  \  ( A [,] B ) ) x  e.  ( B (,] C ) )
3129, 30sylibr 224 . 2  |-  ( ph  ->  ( ( A [,] C )  \  ( A [,] B ) ) 
C_  ( B (,] C ) )
329adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  A  e.  RR* )
333adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  C  e.  RR* )
34 iocssxr 12257 . . . . . . . 8  |-  ( B (,] C )  C_  RR*
35 id 22 . . . . . . . 8  |-  ( x  e.  ( B (,] C )  ->  x  e.  ( B (,] C
) )
3634, 35sseldi 3601 . . . . . . 7  |-  ( x  e.  ( B (,] C )  ->  x  e.  RR* )
3736adantl 482 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  x  e.  RR* )
381adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  B  e.  RR* )
39 iccdificc.4 . . . . . . . . 9  |-  ( ph  ->  A  <_  B )
4039adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  A  <_  B )
41 simpr 477 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  x  e.  ( B (,] C ) )
42 iocgtlb 39724 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  x  e.  ( B (,] C
) )  ->  B  <  x )
4338, 33, 41, 42syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  B  <  x )
4432, 38, 37, 40, 43xrlelttrd 11991 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  A  <  x )
4532, 37, 44xrltled 39486 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  A  <_  x )
46 iocleub 39725 . . . . . . 7  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  x  e.  ( B (,] C
) )  ->  x  <_  C )
4738, 33, 41, 46syl3anc 1326 . . . . . 6  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  x  <_  C )
4832, 33, 37, 45, 47eliccxrd 39753 . . . . 5  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  x  e.  ( A [,] C ) )
4932, 38, 37, 43xrgtnelicc 39765 . . . . 5  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  -.  x  e.  ( A [,] B
) )
5048, 49eldifd 3585 . . . 4  |-  ( (
ph  /\  x  e.  ( B (,] C ) )  ->  x  e.  ( ( A [,] C )  \  ( A [,] B ) ) )
5150ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  ( B (,] C ) x  e.  ( ( A [,] C ) 
\  ( A [,] B ) ) )
52 dfss3 3592 . . 3  |-  ( ( B (,] C ) 
C_  ( ( A [,] C )  \ 
( A [,] B
) )  <->  A. x  e.  ( B (,] C
) x  e.  ( ( A [,] C
)  \  ( A [,] B ) ) )
5351, 52sylibr 224 . 2  |-  ( ph  ->  ( B (,] C
)  C_  ( ( A [,] C )  \ 
( A [,] B
) ) )
5431, 53eqssd 3620 1  |-  ( ph  ->  ( ( A [,] C )  \  ( A [,] B ) )  =  ( B (,] C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571    C_ wss 3574   class class class wbr 4653  (class class class)co 6650   RR*cxr 10073    < clt 10074    <_ cle 10075   (,]cioc 12176   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioc 12180  df-icc 12182
This theorem is referenced by:  salexct2  40557
  Copyright terms: Public domain W3C validator