Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoiccdif Structured version   Visualization version   Unicode version

Theorem icoiccdif 39750
Description: Left closed, right open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
icoiccdif  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  ( ( A [,] B )  \  { B } ) )

Proof of Theorem icoiccdif
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 icossicc 12260 . . . . . . 7  |-  ( A [,) B )  C_  ( A [,] B )
21a1i 11 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  C_  ( A [,] B ) )
32sselda 3603 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  x  e.  ( A [,] B ) )
4 elico1 12218 . . . . . . . . . . 11  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,) B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <  B
) ) )
54biimpa 501 . . . . . . . . . 10  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  ( x  e. 
RR*  /\  A  <_  x  /\  x  <  B
) )
65simp1d 1073 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  x  e.  RR* )
7 simplr 792 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  B  e.  RR* )
85simp3d 1075 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  x  <  B
)
9 xrltne 11994 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  B  e.  RR*  /\  x  < 
B )  ->  B  =/=  x )
106, 7, 8, 9syl3anc 1326 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  B  =/=  x
)
1110necomd 2849 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  x  =/=  B
)
1211neneqd 2799 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  -.  x  =  B )
13 velsn 4193 . . . . . 6  |-  ( x  e.  { B }  <->  x  =  B )
1412, 13sylnibr 319 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  -.  x  e.  { B } )
153, 14eldifd 3585 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  ( A [,) B ) )  ->  x  e.  ( ( A [,] B
)  \  { B } ) )
1615ex 450 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,) B )  ->  x  e.  ( ( A [,] B )  \  { B } ) ) )
1716ssrdv 3609 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  C_  ( ( A [,] B )  \  { B } ) )
18 simpll 790 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  A  e.  RR* )
19 simplr 792 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  B  e.  RR* )
20 eldifi 3732 . . . . . . 7  |-  ( x  e.  ( ( A [,] B )  \  { B } )  ->  x  e.  ( A [,] B ) )
21 eliccxr 39737 . . . . . . 7  |-  ( x  e.  ( A [,] B )  ->  x  e.  RR* )
2220, 21syl 17 . . . . . 6  |-  ( x  e.  ( ( A [,] B )  \  { B } )  ->  x  e.  RR* )
2322adantl 482 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  x  e.  RR* )
2420adantl 482 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  x  e.  ( A [,] B ) )
25 elicc1 12219 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( A [,] B )  <->  ( x  e.  RR*  /\  A  <_  x  /\  x  <_  B
) ) )
2625adantr 481 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  -> 
( x  e.  ( A [,] B )  <-> 
( x  e.  RR*  /\  A  <_  x  /\  x  <_  B ) ) )
2724, 26mpbid 222 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  -> 
( x  e.  RR*  /\  A  <_  x  /\  x  <_  B ) )
2827simp2d 1074 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  A  <_  x )
29 eldifsni 4320 . . . . . . . 8  |-  ( x  e.  ( ( A [,] B )  \  { B } )  ->  x  =/=  B )
3029necomd 2849 . . . . . . 7  |-  ( x  e.  ( ( A [,] B )  \  { B } )  ->  B  =/=  x )
3130adantl 482 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  B  =/=  x )
3227simp3d 1075 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  x  <_  B )
33 xrleltne 11978 . . . . . . 7  |-  ( ( x  e.  RR*  /\  B  e.  RR*  /\  x  <_  B )  ->  (
x  <  B  <->  B  =/=  x ) )
3423, 19, 32, 33syl3anc 1326 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  -> 
( x  <  B  <->  B  =/=  x ) )
3531, 34mpbird 247 . . . . 5  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  x  <  B )
3618, 19, 23, 28, 35elicod 12224 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  x  e.  (
( A [,] B
)  \  { B } ) )  ->  x  e.  ( A [,) B ) )
3736ex 450 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
x  e.  ( ( A [,] B ) 
\  { B }
)  ->  x  e.  ( A [,) B ) ) )
3837ssrdv 3609 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A [,] B
)  \  { B } )  C_  ( A [,) B ) )
3917, 38eqssd 3620 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  ( ( A [,] B )  \  { B } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    \ cdif 3571    C_ wss 3574   {csn 4177   class class class wbr 4653  (class class class)co 6650   RR*cxr 10073    < clt 10074    <_ cle 10075   [,)cico 12177   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ico 12181  df-icc 12182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator