Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccintsng Structured version   Visualization version   Unicode version

Theorem iccintsng 39749
Description: Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
iccintsng  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C ) )  -> 
( ( A [,] B )  i^i  ( B [,] C ) )  =  { B }
)

Proof of Theorem iccintsng
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 1064 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  A  e.  RR* )
2 simpl2 1065 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  B  e.  RR* )
3 simprl 794 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  x  e.  ( A [,] B ) )
4 iccleub 12229 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  x  e.  ( A [,] B
) )  ->  x  <_  B )
51, 2, 3, 4syl3anc 1326 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  x  <_  B
)
6 simpl3 1066 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  C  e.  RR* )
7 simprr 796 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  x  e.  ( B [,] C ) )
8 iccgelb 12230 . . . . . . . 8  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  x  e.  ( B [,] C
) )  ->  B  <_  x )
92, 6, 7, 8syl3anc 1326 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  B  <_  x
)
10 eliccxr 39737 . . . . . . . . . 10  |-  ( x  e.  ( A [,] B )  ->  x  e.  RR* )
113, 10syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  x  e.  RR* )
1211, 2jca 554 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  ( x  e. 
RR*  /\  B  e.  RR* ) )
13 xrletri3 11985 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  B  e.  RR* )  ->  (
x  =  B  <->  ( x  <_  B  /\  B  <_  x ) ) )
1412, 13syl 17 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  ( x  =  B  <->  ( x  <_  B  /\  B  <_  x
) ) )
155, 9, 14mpbir2and 957 . . . . . 6  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )  ->  x  =  B )
1615ex 450 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e. 
RR* )  ->  (
( x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) )  ->  x  =  B ) )
1716adantr 481 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C ) )  -> 
( ( x  e.  ( A [,] B
)  /\  x  e.  ( B [,] C ) )  ->  x  =  B ) )
18 simpll1 1100 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  A  e.  RR* )
19 simpll2 1101 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  B  e.  RR* )
20 simplrl 800 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  A  <_  B )
21 simpr 477 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  x  =  B )
22 simpr 477 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  x  =  B )  ->  x  =  B )
23 ubicc2 12289 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B
) )
2423adantr 481 . . . . . . . 8  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  x  =  B )  ->  B  e.  ( A [,] B
) )
2522, 24eqeltrd 2701 . . . . . . 7  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  /\  x  =  B )  ->  x  e.  ( A [,] B
) )
2618, 19, 20, 21, 25syl31anc 1329 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  x  e.  ( A [,] B
) )
27 simpll3 1102 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  C  e.  RR* )
28 simplrr 801 . . . . . . 7  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  B  <_  C )
29 simpr 477 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  C  e.  RR*  /\  B  <_  C )  /\  x  =  B )  ->  x  =  B )
30 lbicc2 12288 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\  C  e.  RR*  /\  B  <_  C )  ->  B  e.  ( B [,] C
) )
3130adantr 481 . . . . . . . 8  |-  ( ( ( B  e.  RR*  /\  C  e.  RR*  /\  B  <_  C )  /\  x  =  B )  ->  B  e.  ( B [,] C
) )
3229, 31eqeltrd 2701 . . . . . . 7  |-  ( ( ( B  e.  RR*  /\  C  e.  RR*  /\  B  <_  C )  /\  x  =  B )  ->  x  e.  ( B [,] C
) )
3319, 27, 28, 21, 32syl31anc 1329 . . . . . 6  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  x  e.  ( B [,] C
) )
3426, 33jca 554 . . . . 5  |-  ( ( ( ( A  e. 
RR*  /\  B  e.  RR* 
/\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C
) )  /\  x  =  B )  ->  (
x  e.  ( A [,] B )  /\  x  e.  ( B [,] C ) ) )
3534ex 450 . . . 4  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C ) )  -> 
( x  =  B  ->  ( x  e.  ( A [,] B
)  /\  x  e.  ( B [,] C ) ) ) )
3617, 35impbid 202 . . 3  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C ) )  -> 
( ( x  e.  ( A [,] B
)  /\  x  e.  ( B [,] C ) )  <->  x  =  B
) )
37 elin 3796 . . 3  |-  ( x  e.  ( ( A [,] B )  i^i  ( B [,] C
) )  <->  ( x  e.  ( A [,] B
)  /\  x  e.  ( B [,] C ) ) )
38 velsn 4193 . . 3  |-  ( x  e.  { B }  <->  x  =  B )
3936, 37, 383bitr4g 303 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C ) )  -> 
( x  e.  ( ( A [,] B
)  i^i  ( B [,] C ) )  <->  x  e.  { B } ) )
4039eqrdv 2620 1  |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <_  B  /\  B  <_  C ) )  -> 
( ( A [,] B )  i^i  ( B [,] C ) )  =  { B }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573   {csn 4177   class class class wbr 4653  (class class class)co 6650   RR*cxr 10073    <_ cle 10075   [,]cicc 12178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-icc 12182
This theorem is referenced by:  iblspltprt  40189
  Copyright terms: Public domain W3C validator