MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idfu2nd Structured version   Visualization version   Unicode version

Theorem idfu2nd 16537
Description: Value of the morphism part of the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
idfuval.i  |-  I  =  (idfunc `  C )
idfuval.b  |-  B  =  ( Base `  C
)
idfuval.c  |-  ( ph  ->  C  e.  Cat )
idfuval.h  |-  H  =  ( Hom  `  C
)
idfu2nd.x  |-  ( ph  ->  X  e.  B )
idfu2nd.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
idfu2nd  |-  ( ph  ->  ( X ( 2nd `  I ) Y )  =  (  _I  |`  ( X H Y ) ) )

Proof of Theorem idfu2nd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-ov 6653 . 2  |-  ( X ( 2nd `  I
) Y )  =  ( ( 2nd `  I
) `  <. X ,  Y >. )
2 idfuval.i . . . . . 6  |-  I  =  (idfunc `  C )
3 idfuval.b . . . . . 6  |-  B  =  ( Base `  C
)
4 idfuval.c . . . . . 6  |-  ( ph  ->  C  e.  Cat )
5 idfuval.h . . . . . 6  |-  H  =  ( Hom  `  C
)
62, 3, 4, 5idfuval 16536 . . . . 5  |-  ( ph  ->  I  =  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B ) 
|->  (  _I  |`  ( H `  z )
) ) >. )
76fveq2d 6195 . . . 4  |-  ( ph  ->  ( 2nd `  I
)  =  ( 2nd `  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B
)  |->  (  _I  |`  ( H `  z )
) ) >. )
)
8 fvex 6201 . . . . . . 7  |-  ( Base `  C )  e.  _V
93, 8eqeltri 2697 . . . . . 6  |-  B  e. 
_V
10 resiexg 7102 . . . . . 6  |-  ( B  e.  _V  ->  (  _I  |`  B )  e. 
_V )
119, 10ax-mp 5 . . . . 5  |-  (  _I  |`  B )  e.  _V
129, 9xpex 6962 . . . . . 6  |-  ( B  X.  B )  e. 
_V
1312mptex 6486 . . . . 5  |-  ( z  e.  ( B  X.  B )  |->  (  _I  |`  ( H `  z
) ) )  e. 
_V
1411, 13op2nd 7177 . . . 4  |-  ( 2nd `  <. (  _I  |`  B ) ,  ( z  e.  ( B  X.  B
)  |->  (  _I  |`  ( H `  z )
) ) >. )  =  ( z  e.  ( B  X.  B
)  |->  (  _I  |`  ( H `  z )
) )
157, 14syl6eq 2672 . . 3  |-  ( ph  ->  ( 2nd `  I
)  =  ( z  e.  ( B  X.  B )  |->  (  _I  |`  ( H `  z
) ) ) )
16 simpr 477 . . . . . 6  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  z  =  <. X ,  Y >. )
1716fveq2d 6195 . . . . 5  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( H `  z )  =  ( H `  <. X ,  Y >. ) )
18 df-ov 6653 . . . . 5  |-  ( X H Y )  =  ( H `  <. X ,  Y >. )
1917, 18syl6eqr 2674 . . . 4  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  ( H `  z )  =  ( X H Y ) )
2019reseq2d 5396 . . 3  |-  ( (
ph  /\  z  =  <. X ,  Y >. )  ->  (  _I  |`  ( H `  z )
)  =  (  _I  |`  ( X H Y ) ) )
21 idfu2nd.x . . . 4  |-  ( ph  ->  X  e.  B )
22 idfu2nd.y . . . 4  |-  ( ph  ->  Y  e.  B )
23 opelxpi 5148 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
2421, 22, 23syl2anc 693 . . 3  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
25 ovex 6678 . . . 4  |-  ( X H Y )  e. 
_V
26 resiexg 7102 . . . 4  |-  ( ( X H Y )  e.  _V  ->  (  _I  |`  ( X H Y ) )  e. 
_V )
2725, 26mp1i 13 . . 3  |-  ( ph  ->  (  _I  |`  ( X H Y ) )  e.  _V )
2815, 20, 24, 27fvmptd 6288 . 2  |-  ( ph  ->  ( ( 2nd `  I
) `  <. X ,  Y >. )  =  (  _I  |`  ( X H Y ) ) )
291, 28syl5eq 2668 1  |-  ( ph  ->  ( X ( 2nd `  I ) Y )  =  (  _I  |`  ( X H Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183    |-> cmpt 4729    _I cid 5023    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650   2ndc2nd 7167   Basecbs 15857   Hom chom 15952   Catccat 16325  idfunccidfu 16515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-2nd 7169  df-idfu 16519
This theorem is referenced by:  idfu2  16538  idfucl  16541  cofulid  16550  cofurid  16551  idffth  16593  ressffth  16598  catciso  16757
  Copyright terms: Public domain W3C validator