MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressffth Structured version   Visualization version   Unicode version

Theorem ressffth 16598
Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in [Adamek] p. 49. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
ressffth.d  |-  D  =  ( Cs  S )
ressffth.i  |-  I  =  (idfunc `  D )
Assertion
Ref Expression
ressffth  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  I  e.  ( ( D Full  C )  i^i  ( D Faith  C ) ) )

Proof of Theorem ressffth
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 16522 . . 3  |-  Rel  ( D  Func  D )
2 ressffth.d . . . . 5  |-  D  =  ( Cs  S )
3 resscat 16512 . . . . 5  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Cs  S )  e.  Cat )
42, 3syl5eqel 2705 . . . 4  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  D  e.  Cat )
5 ressffth.i . . . . 5  |-  I  =  (idfunc `  D )
65idfucl 16541 . . . 4  |-  ( D  e.  Cat  ->  I  e.  ( D  Func  D
) )
74, 6syl 17 . . 3  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  I  e.  ( D 
Func  D ) )
8 1st2nd 7214 . . 3  |-  ( ( Rel  ( D  Func  D )  /\  I  e.  ( D  Func  D
) )  ->  I  =  <. ( 1st `  I
) ,  ( 2nd `  I ) >. )
91, 7, 8sylancr 695 . 2  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  I  =  <. ( 1st `  I ) ,  ( 2nd `  I
) >. )
10 eqidd 2623 . . . . . . . . 9  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Hom f  `  D )  =  ( Hom f  `  D ) )
11 eqidd 2623 . . . . . . . . 9  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  (compf `  D )  =  (compf `  D ) )
12 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Base `  C )  =  (
Base `  C )
1312ressinbas 15936 . . . . . . . . . . . . 13  |-  ( S  e.  V  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
1413adantl 482 . . . . . . . . . . . 12  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Cs  S )  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
152, 14syl5eq 2668 . . . . . . . . . . 11  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  D  =  ( Cs  ( S  i^i  ( Base `  C ) ) ) )
1615fveq2d 6195 . . . . . . . . . 10  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Hom f  `  D )  =  ( Hom f  `  ( Cs  ( S  i^i  ( Base `  C
) ) ) ) )
17 eqid 2622 . . . . . . . . . . . 12  |-  ( Hom f  `  C )  =  ( Hom f  `  C )
18 simpl 473 . . . . . . . . . . . 12  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  C  e.  Cat )
19 inss2 3834 . . . . . . . . . . . . 13  |-  ( S  i^i  ( Base `  C
) )  C_  ( Base `  C )
2019a1i 11 . . . . . . . . . . . 12  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( S  i^i  ( Base `  C ) ) 
C_  ( Base `  C
) )
21 eqid 2622 . . . . . . . . . . . 12  |-  ( Cs  ( S  i^i  ( Base `  C ) ) )  =  ( Cs  ( S  i^i  ( Base `  C
) ) )
22 eqid 2622 . . . . . . . . . . . 12  |-  ( C  |`cat 
( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) )  =  ( C  |`cat 
( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) )
2312, 17, 18, 20, 21, 22fullresc 16511 . . . . . . . . . . 11  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( ( Hom f  `  ( Cs  ( S  i^i  ( Base `  C ) ) ) )  =  ( Hom f  `  ( C  |`cat  ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) )  /\  (compf `  ( Cs  ( S  i^i  ( Base `  C ) ) ) )  =  (compf `  ( C  |`cat  ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) ) ) )
2423simpld 475 . . . . . . . . . 10  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Hom f  `  ( Cs  ( S  i^i  ( Base `  C
) ) ) )  =  ( Hom f  `  ( C  |`cat 
( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) ) )
2516, 24eqtrd 2656 . . . . . . . . 9  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( Hom f  `  D )  =  ( Hom f  `  ( C  |`cat  ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) ) )
2615fveq2d 6195 . . . . . . . . . 10  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  (compf `  D )  =  (compf `  ( Cs  ( S  i^i  ( Base `  C )
) ) ) )
2723simprd 479 . . . . . . . . . 10  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  (compf `  ( Cs  ( S  i^i  ( Base `  C )
) ) )  =  (compf `  ( C  |`cat  ( ( Hom f  `  C )  |`  (
( S  i^i  ( Base `  C ) )  X.  ( S  i^i  ( Base `  C )
) ) ) ) ) )
2826, 27eqtrd 2656 . . . . . . . . 9  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  (compf `  D )  =  (compf `  ( C  |`cat  ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) ) )
29 ovex 6678 . . . . . . . . . . 11  |-  ( Cs  S )  e.  _V
302, 29eqeltri 2697 . . . . . . . . . 10  |-  D  e. 
_V
3130a1i 11 . . . . . . . . 9  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  D  e.  _V )
32 ovex 6678 . . . . . . . . . 10  |-  ( C  |`cat 
( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) )  e.  _V
3332a1i 11 . . . . . . . . 9  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( C  |`cat  ( ( Hom f  `  C )  |`  (
( S  i^i  ( Base `  C ) )  X.  ( S  i^i  ( Base `  C )
) ) ) )  e.  _V )
3410, 11, 25, 28, 31, 31, 31, 33funcpropd 16560 . . . . . . . 8  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( D  Func  D
)  =  ( D 
Func  ( C  |`cat  ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) ) )
3512, 17, 18, 20fullsubc 16510 . . . . . . . . 9  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) )  e.  (Subcat `  C
) )
36 funcres2 16558 . . . . . . . . 9  |-  ( ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) )  e.  (Subcat `  C
)  ->  ( D  Func  ( C  |`cat  ( ( Hom f  `  C )  |`  (
( S  i^i  ( Base `  C ) )  X.  ( S  i^i  ( Base `  C )
) ) ) ) )  C_  ( D  Func  C ) )
3735, 36syl 17 . . . . . . . 8  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( D  Func  ( C  |`cat  ( ( Hom f  `  C )  |`  ( ( S  i^i  ( Base `  C )
)  X.  ( S  i^i  ( Base `  C
) ) ) ) ) )  C_  ( D  Func  C ) )
3834, 37eqsstrd 3639 . . . . . . 7  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( D  Func  D
)  C_  ( D  Func  C ) )
3938, 7sseldd 3604 . . . . . 6  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  I  e.  ( D 
Func  C ) )
409, 39eqeltrrd 2702 . . . . 5  |-  ( ( C  e.  Cat  /\  S  e.  V )  -> 
<. ( 1st `  I
) ,  ( 2nd `  I ) >.  e.  ( D  Func  C )
)
41 df-br 4654 . . . . 5  |-  ( ( 1st `  I ) ( D  Func  C
) ( 2nd `  I
)  <->  <. ( 1st `  I
) ,  ( 2nd `  I ) >.  e.  ( D  Func  C )
)
4240, 41sylibr 224 . . . 4  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( 1st `  I
) ( D  Func  C ) ( 2nd `  I
) )
43 f1oi 6174 . . . . . 6  |-  (  _I  |`  ( x ( Hom  `  D ) y ) ) : ( x ( Hom  `  D
) y ) -1-1-onto-> ( x ( Hom  `  D
) y )
44 eqid 2622 . . . . . . . 8  |-  ( Base `  D )  =  (
Base `  D )
454adantr 481 . . . . . . . 8  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  D  e.  Cat )
46 eqid 2622 . . . . . . . 8  |-  ( Hom  `  D )  =  ( Hom  `  D )
47 simprl 794 . . . . . . . 8  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  x  e.  ( Base `  D
) )
48 simprr 796 . . . . . . . 8  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  y  e.  ( Base `  D
) )
495, 44, 45, 46, 47, 48idfu2nd 16537 . . . . . . 7  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  (
x ( 2nd `  I
) y )  =  (  _I  |`  (
x ( Hom  `  D
) y ) ) )
50 eqidd 2623 . . . . . . 7  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  (
x ( Hom  `  D
) y )  =  ( x ( Hom  `  D ) y ) )
51 eqid 2622 . . . . . . . . . 10  |-  ( Hom  `  C )  =  ( Hom  `  C )
522, 51resshom 16078 . . . . . . . . 9  |-  ( S  e.  V  ->  ( Hom  `  C )  =  ( Hom  `  D
) )
5352ad2antlr 763 . . . . . . . 8  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  ( Hom  `  C )  =  ( Hom  `  D
) )
545, 44, 45, 47idfu1 16540 . . . . . . . 8  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  (
( 1st `  I
) `  x )  =  x )
555, 44, 45, 48idfu1 16540 . . . . . . . 8  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  (
( 1st `  I
) `  y )  =  y )
5653, 54, 55oveq123d 6671 . . . . . . 7  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  (
( ( 1st `  I
) `  x )
( Hom  `  C ) ( ( 1st `  I
) `  y )
)  =  ( x ( Hom  `  D
) y ) )
5749, 50, 56f1oeq123d 6133 . . . . . 6  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  (
( x ( 2nd `  I ) y ) : ( x ( Hom  `  D )
y ) -1-1-onto-> ( ( ( 1st `  I ) `  x
) ( Hom  `  C
) ( ( 1st `  I ) `  y
) )  <->  (  _I  |`  ( x ( Hom  `  D ) y ) ) : ( x ( Hom  `  D
) y ) -1-1-onto-> ( x ( Hom  `  D
) y ) ) )
5843, 57mpbiri 248 . . . . 5  |-  ( ( ( C  e.  Cat  /\  S  e.  V )  /\  ( x  e.  ( Base `  D
)  /\  y  e.  ( Base `  D )
) )  ->  (
x ( 2nd `  I
) y ) : ( x ( Hom  `  D ) y ) -1-1-onto-> ( ( ( 1st `  I
) `  x )
( Hom  `  C ) ( ( 1st `  I
) `  y )
) )
5958ralrimivva 2971 . . . 4  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  A. x  e.  (
Base `  D ) A. y  e.  ( Base `  D ) ( x ( 2nd `  I
) y ) : ( x ( Hom  `  D ) y ) -1-1-onto-> ( ( ( 1st `  I
) `  x )
( Hom  `  C ) ( ( 1st `  I
) `  y )
) )
6044, 46, 51isffth2 16576 . . . 4  |-  ( ( 1st `  I ) ( ( D Full  C
)  i^i  ( D Faith  C ) ) ( 2nd `  I )  <->  ( ( 1st `  I ) ( D  Func  C )
( 2nd `  I
)  /\  A. x  e.  ( Base `  D
) A. y  e.  ( Base `  D
) ( x ( 2nd `  I ) y ) : ( x ( Hom  `  D
) y ) -1-1-onto-> ( ( ( 1st `  I
) `  x )
( Hom  `  C ) ( ( 1st `  I
) `  y )
) ) )
6142, 59, 60sylanbrc 698 . . 3  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  ( 1st `  I
) ( ( D Full 
C )  i^i  ( D Faith  C ) ) ( 2nd `  I ) )
62 df-br 4654 . . 3  |-  ( ( 1st `  I ) ( ( D Full  C
)  i^i  ( D Faith  C ) ) ( 2nd `  I )  <->  <. ( 1st `  I ) ,  ( 2nd `  I )
>.  e.  ( ( D Full 
C )  i^i  ( D Faith  C ) ) )
6361, 62sylib 208 . 2  |-  ( ( C  e.  Cat  /\  S  e.  V )  -> 
<. ( 1st `  I
) ,  ( 2nd `  I ) >.  e.  ( ( D Full  C )  i^i  ( D Faith  C
) ) )
649, 63eqeltrd 2701 1  |-  ( ( C  e.  Cat  /\  S  e.  V )  ->  I  e.  ( ( D Full  C )  i^i  ( D Faith  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   <.cop 4183   class class class wbr 4653    _I cid 5023    X. cxp 5112    |` cres 5116   Rel wrel 5119   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   ↾s cress 15858   Hom chom 15952   Catccat 16325   Hom f chomf 16327  compfccomf 16328    |`cat cresc 16468  Subcatcsubc 16469    Func cfunc 16514  idfunccidfu 16515   Full cful 16562   Faith cfth 16563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-homf 16331  df-comf 16332  df-ssc 16470  df-resc 16471  df-subc 16472  df-func 16518  df-idfu 16519  df-full 16564  df-fth 16565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator