| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressffth | Structured version Visualization version Unicode version | ||
| Description: The inclusion functor from a full subcategory is a full and faithful functor, see also remark 4.4(2) in [Adamek] p. 49. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| ressffth.d |
|
| ressffth.i |
|
| Ref | Expression |
|---|---|
| ressffth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relfunc 16522 |
. . 3
| |
| 2 | ressffth.d |
. . . . 5
| |
| 3 | resscat 16512 |
. . . . 5
| |
| 4 | 2, 3 | syl5eqel 2705 |
. . . 4
|
| 5 | ressffth.i |
. . . . 5
| |
| 6 | 5 | idfucl 16541 |
. . . 4
|
| 7 | 4, 6 | syl 17 |
. . 3
|
| 8 | 1st2nd 7214 |
. . 3
| |
| 9 | 1, 7, 8 | sylancr 695 |
. 2
|
| 10 | eqidd 2623 |
. . . . . . . . 9
| |
| 11 | eqidd 2623 |
. . . . . . . . 9
| |
| 12 | eqid 2622 |
. . . . . . . . . . . . . 14
| |
| 13 | 12 | ressinbas 15936 |
. . . . . . . . . . . . 13
|
| 14 | 13 | adantl 482 |
. . . . . . . . . . . 12
|
| 15 | 2, 14 | syl5eq 2668 |
. . . . . . . . . . 11
|
| 16 | 15 | fveq2d 6195 |
. . . . . . . . . 10
|
| 17 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 18 | simpl 473 |
. . . . . . . . . . . 12
| |
| 19 | inss2 3834 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . 12
|
| 21 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 22 | eqid 2622 |
. . . . . . . . . . . 12
| |
| 23 | 12, 17, 18, 20, 21, 22 | fullresc 16511 |
. . . . . . . . . . 11
|
| 24 | 23 | simpld 475 |
. . . . . . . . . 10
|
| 25 | 16, 24 | eqtrd 2656 |
. . . . . . . . 9
|
| 26 | 15 | fveq2d 6195 |
. . . . . . . . . 10
|
| 27 | 23 | simprd 479 |
. . . . . . . . . 10
|
| 28 | 26, 27 | eqtrd 2656 |
. . . . . . . . 9
|
| 29 | ovex 6678 |
. . . . . . . . . . 11
| |
| 30 | 2, 29 | eqeltri 2697 |
. . . . . . . . . 10
|
| 31 | 30 | a1i 11 |
. . . . . . . . 9
|
| 32 | ovex 6678 |
. . . . . . . . . 10
| |
| 33 | 32 | a1i 11 |
. . . . . . . . 9
|
| 34 | 10, 11, 25, 28, 31, 31, 31, 33 | funcpropd 16560 |
. . . . . . . 8
|
| 35 | 12, 17, 18, 20 | fullsubc 16510 |
. . . . . . . . 9
|
| 36 | funcres2 16558 |
. . . . . . . . 9
| |
| 37 | 35, 36 | syl 17 |
. . . . . . . 8
|
| 38 | 34, 37 | eqsstrd 3639 |
. . . . . . 7
|
| 39 | 38, 7 | sseldd 3604 |
. . . . . 6
|
| 40 | 9, 39 | eqeltrrd 2702 |
. . . . 5
|
| 41 | df-br 4654 |
. . . . 5
| |
| 42 | 40, 41 | sylibr 224 |
. . . 4
|
| 43 | f1oi 6174 |
. . . . . 6
| |
| 44 | eqid 2622 |
. . . . . . . 8
| |
| 45 | 4 | adantr 481 |
. . . . . . . 8
|
| 46 | eqid 2622 |
. . . . . . . 8
| |
| 47 | simprl 794 |
. . . . . . . 8
| |
| 48 | simprr 796 |
. . . . . . . 8
| |
| 49 | 5, 44, 45, 46, 47, 48 | idfu2nd 16537 |
. . . . . . 7
|
| 50 | eqidd 2623 |
. . . . . . 7
| |
| 51 | eqid 2622 |
. . . . . . . . . 10
| |
| 52 | 2, 51 | resshom 16078 |
. . . . . . . . 9
|
| 53 | 52 | ad2antlr 763 |
. . . . . . . 8
|
| 54 | 5, 44, 45, 47 | idfu1 16540 |
. . . . . . . 8
|
| 55 | 5, 44, 45, 48 | idfu1 16540 |
. . . . . . . 8
|
| 56 | 53, 54, 55 | oveq123d 6671 |
. . . . . . 7
|
| 57 | 49, 50, 56 | f1oeq123d 6133 |
. . . . . 6
|
| 58 | 43, 57 | mpbiri 248 |
. . . . 5
|
| 59 | 58 | ralrimivva 2971 |
. . . 4
|
| 60 | 44, 46, 51 | isffth2 16576 |
. . . 4
|
| 61 | 42, 59, 60 | sylanbrc 698 |
. . 3
|
| 62 | df-br 4654 |
. . 3
| |
| 63 | 61, 62 | sylib 208 |
. 2
|
| 64 | 9, 63 | eqeltrd 2701 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-pm 7860 df-ixp 7909 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 df-7 11084 df-8 11085 df-9 11086 df-n0 11293 df-z 11378 df-dec 11494 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 df-hom 15966 df-cco 15967 df-cat 16329 df-cid 16330 df-homf 16331 df-comf 16332 df-ssc 16470 df-resc 16471 df-subc 16472 df-func 16518 df-idfu 16519 df-full 16564 df-fth 16565 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |