MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofulid Structured version   Visualization version   Unicode version

Theorem cofulid 16550
Description: The identity functor is a left identity for composition. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cofulid.g  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
cofulid.1  |-  I  =  (idfunc `  D )
Assertion
Ref Expression
cofulid  |-  ( ph  ->  ( I  o.func  F )  =  F )

Proof of Theorem cofulid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cofulid.1 . . . . . 6  |-  I  =  (idfunc `  D )
2 eqid 2622 . . . . . 6  |-  ( Base `  D )  =  (
Base `  D )
3 cofulid.g . . . . . . . 8  |-  ( ph  ->  F  e.  ( C 
Func  D ) )
4 funcrcl 16523 . . . . . . . 8  |-  ( F  e.  ( C  Func  D )  ->  ( C  e.  Cat  /\  D  e. 
Cat ) )
53, 4syl 17 . . . . . . 7  |-  ( ph  ->  ( C  e.  Cat  /\  D  e.  Cat )
)
65simprd 479 . . . . . 6  |-  ( ph  ->  D  e.  Cat )
71, 2, 6idfu1st 16539 . . . . 5  |-  ( ph  ->  ( 1st `  I
)  =  (  _I  |`  ( Base `  D
) ) )
87coeq1d 5283 . . . 4  |-  ( ph  ->  ( ( 1st `  I
)  o.  ( 1st `  F ) )  =  ( (  _I  |`  ( Base `  D ) )  o.  ( 1st `  F
) ) )
9 eqid 2622 . . . . . 6  |-  ( Base `  C )  =  (
Base `  C )
10 relfunc 16522 . . . . . . 7  |-  Rel  ( C  Func  D )
11 1st2ndbr 7217 . . . . . . 7  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  ( 1st `  F ) ( C  Func  D )
( 2nd `  F
) )
1210, 3, 11sylancr 695 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
139, 2, 12funcf1 16526 . . . . 5  |-  ( ph  ->  ( 1st `  F
) : ( Base `  C ) --> ( Base `  D ) )
14 fcoi2 6079 . . . . 5  |-  ( ( 1st `  F ) : ( Base `  C
) --> ( Base `  D
)  ->  ( (  _I  |`  ( Base `  D
) )  o.  ( 1st `  F ) )  =  ( 1st `  F
) )
1513, 14syl 17 . . . 4  |-  ( ph  ->  ( (  _I  |`  ( Base `  D ) )  o.  ( 1st `  F
) )  =  ( 1st `  F ) )
168, 15eqtrd 2656 . . 3  |-  ( ph  ->  ( ( 1st `  I
)  o.  ( 1st `  F ) )  =  ( 1st `  F
) )
1763ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  D  e.  Cat )
18 eqid 2622 . . . . . . . 8  |-  ( Hom  `  D )  =  ( Hom  `  D )
1913ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  x )  e.  (
Base `  D )
)
20193adant3 1081 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( ( 1st `  F ) `  x
)  e.  ( Base `  D ) )
2113ffvelrnda 6359 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( Base `  C )
)  ->  ( ( 1st `  F ) `  y )  e.  (
Base `  D )
)
22213adant2 1080 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( ( 1st `  F ) `  y
)  e.  ( Base `  D ) )
231, 2, 17, 18, 20, 22idfu2nd 16537 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( ( ( 1st `  F ) `
 x ) ( 2nd `  I ) ( ( 1st `  F
) `  y )
)  =  (  _I  |`  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) ) )
2423coeq1d 5283 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  I
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) )  =  ( (  _I  |`  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) )  o.  ( x ( 2nd `  F ) y ) ) )
25 eqid 2622 . . . . . . . 8  |-  ( Hom  `  C )  =  ( Hom  `  C )
26123ad2ant1 1082 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( 1st `  F
) ( C  Func  D ) ( 2nd `  F
) )
27 simp2 1062 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  x  e.  (
Base `  C )
)
28 simp3 1063 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  y  e.  (
Base `  C )
)
299, 25, 18, 26, 27, 28funcf2 16528 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( x ( 2nd `  F ) y ) : ( x ( Hom  `  C
) y ) --> ( ( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )
30 fcoi2 6079 . . . . . . 7  |-  ( ( x ( 2nd `  F
) y ) : ( x ( Hom  `  C ) y ) --> ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) )  ->  (
(  _I  |`  (
( ( 1st `  F
) `  x )
( Hom  `  D ) ( ( 1st `  F
) `  y )
) )  o.  (
x ( 2nd `  F
) y ) )  =  ( x ( 2nd `  F ) y ) )
3129, 30syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( (  _I  |`  ( ( ( 1st `  F ) `  x
) ( Hom  `  D
) ( ( 1st `  F ) `  y
) ) )  o.  ( x ( 2nd `  F ) y ) )  =  ( x ( 2nd `  F
) y ) )
3224, 31eqtrd 2656 . . . . 5  |-  ( (
ph  /\  x  e.  ( Base `  C )  /\  y  e.  ( Base `  C ) )  ->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  I
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) )  =  ( x ( 2nd `  F ) y ) )
3332mpt2eq3dva 6719 . . . 4  |-  ( ph  ->  ( x  e.  (
Base `  C ) ,  y  e.  ( Base `  C )  |->  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  I
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( x ( 2nd `  F ) y ) ) )
349, 12funcfn2 16529 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  Fn  ( (
Base `  C )  X.  ( Base `  C
) ) )
35 fnov 6768 . . . . 5  |-  ( ( 2nd `  F )  Fn  ( ( Base `  C )  X.  ( Base `  C ) )  <-> 
( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( x ( 2nd `  F ) y ) ) )
3634, 35sylib 208 . . . 4  |-  ( ph  ->  ( 2nd `  F
)  =  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( x ( 2nd `  F ) y ) ) )
3733, 36eqtr4d 2659 . . 3  |-  ( ph  ->  ( x  e.  (
Base `  C ) ,  y  e.  ( Base `  C )  |->  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  I
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) )  =  ( 2nd `  F ) )
3816, 37opeq12d 4410 . 2  |-  ( ph  -> 
<. ( ( 1st `  I
)  o.  ( 1st `  F ) ) ,  ( x  e.  (
Base `  C ) ,  y  e.  ( Base `  C )  |->  ( ( ( ( 1st `  F ) `  x
) ( 2nd `  I
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >.  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
391idfucl 16541 . . . 4  |-  ( D  e.  Cat  ->  I  e.  ( D  Func  D
) )
406, 39syl 17 . . 3  |-  ( ph  ->  I  e.  ( D 
Func  D ) )
419, 3, 40cofuval 16542 . 2  |-  ( ph  ->  ( I  o.func  F )  =  <. ( ( 1st `  I )  o.  ( 1st `  F ) ) ,  ( x  e.  ( Base `  C
) ,  y  e.  ( Base `  C
)  |->  ( ( ( ( 1st `  F
) `  x )
( 2nd `  I
) ( ( 1st `  F ) `  y
) )  o.  (
x ( 2nd `  F
) y ) ) ) >. )
42 1st2nd 7214 . . 3  |-  ( ( Rel  ( C  Func  D )  /\  F  e.  ( C  Func  D
) )  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
4310, 3, 42sylancr 695 . 2  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
4438, 41, 433eqtr4d 2666 1  |-  ( ph  ->  ( I  o.func  F )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   <.cop 4183   class class class wbr 4653    _I cid 5023    X. cxp 5112    |` cres 5116    o. ccom 5118   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   Basecbs 15857   Hom chom 15952   Catccat 16325    Func cfunc 16514  idfunccidfu 16515    o.func ccofu 16516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-ixp 7909  df-cat 16329  df-cid 16330  df-func 16518  df-idfu 16519  df-cofu 16520
This theorem is referenced by:  catccatid  16752
  Copyright terms: Public domain W3C validator