Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinexd Structured version   Visualization version   Unicode version

Theorem iinexd 39318
Description: The existence of an indexed union.  x is normally a free-variable parameter in  B, which should be read  B ( x ). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
iinexd.1  |-  ( ph  ->  A  =/=  (/) )
iinexd.2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
Assertion
Ref Expression
iinexd  |-  ( ph  -> 
|^|_ x  e.  A  B  e.  _V )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)    C( x)

Proof of Theorem iinexd
StepHypRef Expression
1 iinexd.1 . 2  |-  ( ph  ->  A  =/=  (/) )
2 iinexd.2 . 2  |-  ( ph  ->  A. x  e.  A  B  e.  C )
3 iinexg 4824 . 2  |-  ( ( A  =/=  (/)  /\  A. x  e.  A  B  e.  C )  ->  |^|_ x  e.  A  B  e.  _V )
41, 2, 3syl2anc 693 1  |-  ( ph  -> 
|^|_ x  e.  A  B  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   (/)c0 3915   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-int 4476  df-iin 4523
This theorem is referenced by:  smfsuplem1  41017  smfinflem  41023  smflimsuplem1  41026  smflimsuplem2  41027  smflimsuplem3  41028  smflimsuplem4  41029  smflimsuplem5  41030  smflimsuplem7  41032
  Copyright terms: Public domain W3C validator