MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmodvdslcmf Structured version   Visualization version   Unicode version

Theorem prmodvdslcmf 15751
Description: The primorial of a nonnegative integer divides the least common multiple of all positive integers less than or equal to the integer. (Contributed by AV, 19-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmodvdslcmf  |-  ( N  e.  NN0  ->  (#p `  N
)  ||  (lcm `  (
1 ... N ) ) )

Proof of Theorem prmodvdslcmf
Dummy variables  k  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prmoval 15737 . . 3  |-  ( N  e.  NN0  ->  (#p `  N
)  =  prod_ k  e.  ( 1 ... N
) if ( k  e.  Prime ,  k ,  1 ) )
2 eqidd 2623 . . . . . 6  |-  ( k  e.  ( 1 ... N )  ->  (
m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) )
3 simpr 477 . . . . . . . 8  |-  ( ( k  e.  ( 1 ... N )  /\  m  =  k )  ->  m  =  k )
43eleq1d 2686 . . . . . . 7  |-  ( ( k  e.  ( 1 ... N )  /\  m  =  k )  ->  ( m  e.  Prime  <->  k  e.  Prime ) )
54, 3ifbieq1d 4109 . . . . . 6  |-  ( ( k  e.  ( 1 ... N )  /\  m  =  k )  ->  if ( m  e. 
Prime ,  m , 
1 )  =  if ( k  e.  Prime ,  k ,  1 ) )
6 elfznn 12370 . . . . . 6  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
7 1nn 11031 . . . . . . . 8  |-  1  e.  NN
87a1i 11 . . . . . . 7  |-  ( k  e.  ( 1 ... N )  ->  1  e.  NN )
96, 8ifcld 4131 . . . . . 6  |-  ( k  e.  ( 1 ... N )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  NN )
102, 5, 6, 9fvmptd 6288 . . . . 5  |-  ( k  e.  ( 1 ... N )  ->  (
( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  k ,  1 ) )
1110eqcomd 2628 . . . 4  |-  ( k  e.  ( 1 ... N )  ->  if ( k  e.  Prime ,  k ,  1 )  =  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k ) )
1211prodeq2i 14649 . . 3  |-  prod_ k  e.  ( 1 ... N
) if ( k  e.  Prime ,  k ,  1 )  =  prod_ k  e.  ( 1 ... N ) ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  k )
131, 12syl6eq 2672 . 2  |-  ( N  e.  NN0  ->  (#p `  N
)  =  prod_ k  e.  ( 1 ... N
) ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k ) )
14 fzfid 12772 . . . 4  |-  ( N  e.  NN0  ->  ( 1 ... N )  e. 
Fin )
15 fz1ssnn 12372 . . . 4  |-  ( 1 ... N )  C_  NN
1614, 15jctil 560 . . 3  |-  ( N  e.  NN0  ->  ( ( 1 ... N ) 
C_  NN  /\  (
1 ... N )  e. 
Fin ) )
17 fzssz 12343 . . . . 5  |-  ( 1 ... N )  C_  ZZ
1817a1i 11 . . . 4  |-  ( N  e.  NN0  ->  ( 1 ... N )  C_  ZZ )
19 0nelfz1 12360 . . . . 5  |-  0  e/  ( 1 ... N
)
2019a1i 11 . . . 4  |-  ( N  e.  NN0  ->  0  e/  ( 1 ... N
) )
21 lcmfn0cl 15339 . . . 4  |-  ( ( ( 1 ... N
)  C_  ZZ  /\  (
1 ... N )  e. 
Fin  /\  0  e/  ( 1 ... N
) )  ->  (lcm `  ( 1 ... N
) )  e.  NN )
2218, 14, 20, 21syl3anc 1326 . . 3  |-  ( N  e.  NN0  ->  (lcm `  (
1 ... N ) )  e.  NN )
23 id 22 . . . . . 6  |-  ( m  e.  NN  ->  m  e.  NN )
247a1i 11 . . . . . 6  |-  ( m  e.  NN  ->  1  e.  NN )
2523, 24ifcld 4131 . . . . 5  |-  ( m  e.  NN  ->  if ( m  e.  Prime ,  m ,  1 )  e.  NN )
2625adantl 482 . . . 4  |-  ( ( N  e.  NN0  /\  m  e.  NN )  ->  if ( m  e. 
Prime ,  m , 
1 )  e.  NN )
27 eqid 2622 . . . 4  |-  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) )
2826, 27fmptd 6385 . . 3  |-  ( N  e.  NN0  ->  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) : NN --> NN )
29 simpr 477 . . . . . . 7  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  k  e.  ( 1 ... N ) )
3029adantr 481 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  /\  x  e.  ( ( 1 ... N
)  \  { k } ) )  -> 
k  e.  ( 1 ... N ) )
31 eldifi 3732 . . . . . . 7  |-  ( x  e.  ( ( 1 ... N )  \  { k } )  ->  x  e.  ( 1 ... N ) )
3231adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  /\  x  e.  ( ( 1 ... N
)  \  { k } ) )  ->  x  e.  ( 1 ... N ) )
33 eldif 3584 . . . . . . . 8  |-  ( x  e.  ( ( 1 ... N )  \  { k } )  <-> 
( x  e.  ( 1 ... N )  /\  -.  x  e. 
{ k } ) )
34 velsn 4193 . . . . . . . . . . . 12  |-  ( x  e.  { k }  <-> 
x  =  k )
3534biimpri 218 . . . . . . . . . . 11  |-  ( x  =  k  ->  x  e.  { k } )
3635equcoms 1947 . . . . . . . . . 10  |-  ( k  =  x  ->  x  e.  { k } )
3736necon3bi 2820 . . . . . . . . 9  |-  ( -.  x  e.  { k }  ->  k  =/=  x )
3837adantl 482 . . . . . . . 8  |-  ( ( x  e.  ( 1 ... N )  /\  -.  x  e.  { k } )  ->  k  =/=  x )
3933, 38sylbi 207 . . . . . . 7  |-  ( x  e.  ( ( 1 ... N )  \  { k } )  ->  k  =/=  x
)
4039adantl 482 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  /\  x  e.  ( ( 1 ... N
)  \  { k } ) )  -> 
k  =/=  x )
4127fvprmselgcd1 15749 . . . . . 6  |-  ( ( k  e.  ( 1 ... N )  /\  x  e.  ( 1 ... N )  /\  k  =/=  x )  -> 
( ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k )  gcd  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  x ) )  =  1 )
4230, 32, 40, 41syl3anc 1326 . . . . 5  |-  ( ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  /\  x  e.  ( ( 1 ... N
)  \  { k } ) )  -> 
( ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k )  gcd  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  x ) )  =  1 )
4342ralrimiva 2966 . . . 4  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  A. x  e.  ( ( 1 ... N
)  \  { k } ) ( ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  k )  gcd  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 x ) )  =  1 )
4443ralrimiva 2966 . . 3  |-  ( N  e.  NN0  ->  A. k  e.  ( 1 ... N
) A. x  e.  ( ( 1 ... N )  \  {
k } ) ( ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  k )  gcd  (
( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  x ) )  =  1 )
45 eqidd 2623 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) )
46 simpr 477 . . . . . . . 8  |-  ( ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  /\  m  =  k )  ->  m  =  k )
4746eleq1d 2686 . . . . . . 7  |-  ( ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  /\  m  =  k )  ->  ( m  e.  Prime 
<->  k  e.  Prime )
)
4847, 46ifbieq1d 4109 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  /\  m  =  k )  ->  if (
m  e.  Prime ,  m ,  1 )  =  if ( k  e. 
Prime ,  k , 
1 ) )
4915, 29sseldi 3601 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  k  e.  NN )
5017, 29sseldi 3601 . . . . . . 7  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  k  e.  ZZ )
51 1zzd 11408 . . . . . . 7  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  1  e.  ZZ )
5250, 51ifcld 4131 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  ZZ )
5345, 48, 49, 52fvmptd 6288 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k )  =  if ( k  e. 
Prime ,  k , 
1 ) )
54 elfzuz2 12346 . . . . . . . . 9  |-  ( k  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
5554adantl 482 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  N  e.  (
ZZ>= `  1 ) )
56 eluzfz1 12348 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  1
)  ->  1  e.  ( 1 ... N
) )
5755, 56syl 17 . . . . . . 7  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  1  e.  ( 1 ... N ) )
5829, 57ifcld 4131 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  if ( k  e.  Prime ,  k ,  1 )  e.  ( 1 ... N ) )
5916adantr 481 . . . . . . 7  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  ( ( 1 ... N )  C_  NN  /\  ( 1 ... N )  e.  Fin ) )
60172a1i 12 . . . . . . . 8  |-  ( ( 1 ... N )  e.  Fin  ->  (
( 1 ... N
)  C_  NN  ->  ( 1 ... N ) 
C_  ZZ ) )
6160imdistanri 727 . . . . . . 7  |-  ( ( ( 1 ... N
)  C_  NN  /\  (
1 ... N )  e. 
Fin )  ->  (
( 1 ... N
)  C_  ZZ  /\  (
1 ... N )  e. 
Fin ) )
62 dvdslcmf 15344 . . . . . . 7  |-  ( ( ( 1 ... N
)  C_  ZZ  /\  (
1 ... N )  e. 
Fin )  ->  A. x  e.  ( 1 ... N
) x  ||  (lcm `  ( 1 ... N
) ) )
6359, 61, 623syl 18 . . . . . 6  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  A. x  e.  ( 1 ... N ) x  ||  (lcm `  (
1 ... N ) ) )
64 breq1 4656 . . . . . . 7  |-  ( x  =  if ( k  e.  Prime ,  k ,  1 )  ->  (
x  ||  (lcm `  (
1 ... N ) )  <-> 
if ( k  e. 
Prime ,  k , 
1 )  ||  (lcm `  ( 1 ... N
) ) ) )
6564rspcv 3305 . . . . . 6  |-  ( if ( k  e.  Prime ,  k ,  1 )  e.  ( 1 ... N )  ->  ( A. x  e.  (
1 ... N ) x 
||  (lcm `  ( 1 ... N ) )  ->  if ( k  e.  Prime ,  k ,  1 ) 
||  (lcm `  ( 1 ... N ) ) ) )
6658, 63, 65sylc 65 . . . . 5  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  if ( k  e.  Prime ,  k ,  1 )  ||  (lcm `  ( 1 ... N
) ) )
6753, 66eqbrtrd 4675 . . . 4  |-  ( ( N  e.  NN0  /\  k  e.  ( 1 ... N ) )  ->  ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k )  ||  (lcm `
 ( 1 ... N ) ) )
6867ralrimiva 2966 . . 3  |-  ( N  e.  NN0  ->  A. k  e.  ( 1 ... N
) ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k )  ||  (lcm `
 ( 1 ... N ) ) )
69 coprmproddvds 15377 . . 3  |-  ( ( ( ( 1 ... N )  C_  NN  /\  ( 1 ... N
)  e.  Fin )  /\  ( (lcm `  (
1 ... N ) )  e.  NN  /\  (
m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) : NN --> NN )  /\  ( A. k  e.  ( 1 ... N
) A. x  e.  ( ( 1 ... N )  \  {
k } ) ( ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  k )  gcd  (
( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  x ) )  =  1  /\ 
A. k  e.  ( 1 ... N ) ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  k )  ||  (lcm `  ( 1 ... N
) ) ) )  ->  prod_ k  e.  ( 1 ... N ) ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `  k )  ||  (lcm `  ( 1 ... N
) ) )
7016, 22, 28, 44, 68, 69syl122anc 1335 . 2  |-  ( N  e.  NN0  ->  prod_ k  e.  ( 1 ... N
) ( ( m  e.  NN  |->  if ( m  e.  Prime ,  m ,  1 ) ) `
 k )  ||  (lcm `
 ( 1 ... N ) ) )
7113, 70eqbrtrd 4675 1  |-  ( N  e.  NN0  ->  (#p `  N
)  ||  (lcm `  (
1 ... N ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912    \ cdif 3571    C_ wss 3574   ifcif 4086   {csn 4177   class class class wbr 4653    |-> cmpt 4729   -->wf 5884   ` cfv 5888  (class class class)co 6650   Fincfn 7955   0cc0 9936   1c1 9937   NNcn 11020   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326   prod_cprod 14635    || cdvds 14983    gcd cgcd 15216  lcmclcmf 15302   Primecprime 15385  #pcprmo 15735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-prod 14636  df-dvds 14984  df-gcd 15217  df-lcmf 15304  df-prm 15386  df-prmo 15736
This theorem is referenced by:  prmolelcmf  15752
  Copyright terms: Public domain W3C validator