Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  seqpo Structured version   Visualization version   Unicode version

Theorem seqpo 33543
Description: Two ways to say that a sequence respects a partial order. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
seqpo  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  <->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
) ) )
Distinct variable groups:    m, F, n, s    A, m, n, s    R, m, n, s

Proof of Theorem seqpo
Dummy variables  p  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  ( m  + 
1 )  ->  ( F `  p )  =  ( F `  ( m  +  1
) ) )
21breq2d 4665 . . . . . . . . 9  |-  ( p  =  ( m  + 
1 )  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  ( m  +  1 ) ) ) )
32imbi2d 330 . . . . . . . 8  |-  ( p  =  ( m  + 
1 )  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 ( m  + 
1 ) ) ) ) )
4 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  q  ->  ( F `  p )  =  ( F `  q ) )
54breq2d 4665 . . . . . . . . 9  |-  ( p  =  q  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  q ) ) )
65imbi2d 330 . . . . . . . 8  |-  ( p  =  q  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 q ) ) ) )
7 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  ( q  +  1 )  ->  ( F `  p )  =  ( F `  ( q  +  1 ) ) )
87breq2d 4665 . . . . . . . . 9  |-  ( p  =  ( q  +  1 )  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) )
98imbi2d 330 . . . . . . . 8  |-  ( p  =  ( q  +  1 )  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) ) )
10 fveq2 6191 . . . . . . . . . 10  |-  ( p  =  n  ->  ( F `  p )  =  ( F `  n ) )
1110breq2d 4665 . . . . . . . . 9  |-  ( p  =  n  ->  (
( F `  m
) R ( F `
 p )  <->  ( F `  m ) R ( F `  n ) ) )
1211imbi2d 330 . . . . . . . 8  |-  ( p  =  n  ->  (
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 p ) )  <-> 
( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 n ) ) ) )
13 fveq2 6191 . . . . . . . . . . . 12  |-  ( s  =  m  ->  ( F `  s )  =  ( F `  m ) )
14 oveq1 6657 . . . . . . . . . . . . 13  |-  ( s  =  m  ->  (
s  +  1 )  =  ( m  + 
1 ) )
1514fveq2d 6195 . . . . . . . . . . . 12  |-  ( s  =  m  ->  ( F `  ( s  +  1 ) )  =  ( F `  ( m  +  1
) ) )
1613, 15breq12d 4666 . . . . . . . . . . 11  |-  ( s  =  m  ->  (
( F `  s
) R ( F `
 ( s  +  1 ) )  <->  ( F `  m ) R ( F `  ( m  +  1 ) ) ) )
1716rspccva 3308 . . . . . . . . . 10  |-  ( ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN )  ->  ( F `  m ) R ( F `  ( m  +  1
) ) )
1817adantl 482 . . . . . . . . 9  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  ( F `  m ) R ( F `  ( m  +  1
) ) )
1918a1i 11 . . . . . . . 8  |-  ( ( m  +  1 )  e.  ZZ  ->  (
( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 ( m  + 
1 ) ) ) )
20 peano2nn 11032 . . . . . . . . . . . . . . . 16  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  NN )
21 elnnuz 11724 . . . . . . . . . . . . . . . 16  |-  ( ( m  +  1 )  e.  NN  <->  ( m  +  1 )  e.  ( ZZ>= `  1 )
)
2220, 21sylib 208 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  (
m  +  1 )  e.  ( ZZ>= `  1
) )
23 uztrn 11704 . . . . . . . . . . . . . . . . 17  |-  ( ( q  e.  ( ZZ>= `  ( m  +  1
) )  /\  (
m  +  1 )  e.  ( ZZ>= `  1
) )  ->  q  e.  ( ZZ>= `  1 )
)
24 elnnuz 11724 . . . . . . . . . . . . . . . . 17  |-  ( q  e.  NN  <->  q  e.  ( ZZ>= `  1 )
)
2523, 24sylibr 224 . . . . . . . . . . . . . . . 16  |-  ( ( q  e.  ( ZZ>= `  ( m  +  1
) )  /\  (
m  +  1 )  e.  ( ZZ>= `  1
) )  ->  q  e.  NN )
2625expcom 451 . . . . . . . . . . . . . . 15  |-  ( ( m  +  1 )  e.  ( ZZ>= `  1
)  ->  ( q  e.  ( ZZ>= `  ( m  +  1 ) )  ->  q  e.  NN ) )
2722, 26syl 17 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
q  e.  ( ZZ>= `  ( m  +  1
) )  ->  q  e.  NN ) )
2827imdistani 726 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  q  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
( m  e.  NN  /\  q  e.  NN ) )
29 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  q  ->  ( F `  s )  =  ( F `  q ) )
30 oveq1 6657 . . . . . . . . . . . . . . . . . . 19  |-  ( s  =  q  ->  (
s  +  1 )  =  ( q  +  1 ) )
3130fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  q  ->  ( F `  ( s  +  1 ) )  =  ( F `  ( q  +  1 ) ) )
3229, 31breq12d 4666 . . . . . . . . . . . . . . . . 17  |-  ( s  =  q  ->  (
( F `  s
) R ( F `
 ( s  +  1 ) )  <->  ( F `  q ) R ( F `  ( q  +  1 ) ) ) )
3332rspccva 3308 . . . . . . . . . . . . . . . 16  |-  ( ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  q  e.  NN )  ->  ( F `  q ) R ( F `  ( q  +  1 ) ) )
3433ad2ant2l 782 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  q ) R ( F `  ( q  +  1 ) ) )
3534ex 450 . . . . . . . . . . . . . 14  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  NN )  ->  ( F `  q
) R ( F `
 ( q  +  1 ) ) ) )
36 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> A  /\  m  e.  NN )  ->  ( F `  m
)  e.  A )
3736adantrr 753 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  m )  e.  A
)
38 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> A  /\  q  e.  NN )  ->  ( F `  q
)  e.  A )
3938adantrl 752 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  q )  e.  A
)
40 peano2nn 11032 . . . . . . . . . . . . . . . . . . . 20  |-  ( q  e.  NN  ->  (
q  +  1 )  e.  NN )
41 ffvelrn 6357 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : NN --> A  /\  ( q  +  1 )  e.  NN )  ->  ( F `  ( q  +  1 ) )  e.  A
)
4240, 41sylan2 491 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> A  /\  q  e.  NN )  ->  ( F `  (
q  +  1 ) )  e.  A )
4342adantrl 752 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( F `  ( q  +  1 ) )  e.  A
)
4437, 39, 433jca 1242 . . . . . . . . . . . . . . . . 17  |-  ( ( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  ->  ( ( F `  m )  e.  A  /\  ( F `  q )  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A ) )
45 potr 5047 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  Po  A  /\  ( ( F `  m )  e.  A  /\  ( F `  q
)  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A ) )  ->  ( ( ( F `  m ) R ( F `  q )  /\  ( F `  q ) R ( F `  ( q  +  1 ) ) )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) )
4645expcomd 454 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  Po  A  /\  ( ( F `  m )  e.  A  /\  ( F `  q
)  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A ) )  ->  ( ( F `
 q ) R ( F `  (
q  +  1 ) )  ->  ( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
4746ex 450 . . . . . . . . . . . . . . . . 17  |-  ( R  Po  A  ->  (
( ( F `  m )  e.  A  /\  ( F `  q
)  e.  A  /\  ( F `  ( q  +  1 ) )  e.  A )  -> 
( ( F `  q ) R ( F `  ( q  +  1 ) )  ->  ( ( F `
 m ) R ( F `  q
)  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
4844, 47syl5 34 . . . . . . . . . . . . . . . 16  |-  ( R  Po  A  ->  (
( F : NN --> A  /\  ( m  e.  NN  /\  q  e.  NN ) )  -> 
( ( F `  q ) R ( F `  ( q  +  1 ) )  ->  ( ( F `
 m ) R ( F `  q
)  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
4948expdimp 453 . . . . . . . . . . . . . . 15  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( ( m  e.  NN  /\  q  e.  NN )  ->  (
( F `  q
) R ( F `
 ( q  +  1 ) )  -> 
( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
5049adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  NN )  ->  ( ( F `  q ) R ( F `  ( q  +  1 ) )  ->  ( ( F `
 m ) R ( F `  q
)  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) ) )
5135, 50mpdd 43 . . . . . . . . . . . . 13  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  NN )  ->  ( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
5228, 51syl5 34 . . . . . . . . . . . 12  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  ( (
m  e.  NN  /\  q  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
5352expdimp 453 . . . . . . . . . . 11  |-  ( ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  /\  m  e.  NN )  ->  ( q  e.  (
ZZ>= `  ( m  + 
1 ) )  -> 
( ( F `  m ) R ( F `  q )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
5453anasss 679 . . . . . . . . . 10  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  (
q  e.  ( ZZ>= `  ( m  +  1
) )  ->  (
( F `  m
) R ( F `
 q )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) ) )
5554com12 32 . . . . . . . . 9  |-  ( q  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( (
( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  (
( F `  m
) R ( F `
 q )  -> 
( F `  m
) R ( F `
 ( q  +  1 ) ) ) ) )
5655a2d 29 . . . . . . . 8  |-  ( q  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( (
( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  -> 
( F `  m
) R ( F `
 q ) )  ->  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  ( F `  m ) R ( F `  ( q  +  1 ) ) ) ) )
573, 6, 9, 12, 19, 56uzind4 11746 . . . . . . 7  |-  ( n  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( (
( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  ( F `  m ) R ( F `  n ) ) )
5857com12 32 . . . . . 6  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  (
n  e.  ( ZZ>= `  ( m  +  1
) )  ->  ( F `  m ) R ( F `  n ) ) )
5958ralrimiv 2965 . . . . 5  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  /\  m  e.  NN ) )  ->  A. n  e.  ( ZZ>= `  ( m  +  1 ) ) ( F `  m
) R ( F `
 n ) )
6059anassrs 680 . . . 4  |-  ( ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  /\  m  e.  NN )  ->  A. n  e.  (
ZZ>= `  ( m  + 
1 ) ) ( F `  m ) R ( F `  n ) )
6160ralrimiva 2966 . . 3  |-  ( ( ( R  Po  A  /\  F : NN --> A )  /\  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )  ->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1 ) ) ( F `  m
) R ( F `
 n ) )
6261ex 450 . 2  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  ->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
) ) )
63 oveq1 6657 . . . . . . . 8  |-  ( m  =  s  ->  (
m  +  1 )  =  ( s  +  1 ) )
6463fveq2d 6195 . . . . . . 7  |-  ( m  =  s  ->  ( ZZ>=
`  ( m  + 
1 ) )  =  ( ZZ>= `  ( s  +  1 ) ) )
65 fveq2 6191 . . . . . . . 8  |-  ( m  =  s  ->  ( F `  m )  =  ( F `  s ) )
6665breq1d 4663 . . . . . . 7  |-  ( m  =  s  ->  (
( F `  m
) R ( F `
 n )  <->  ( F `  s ) R ( F `  n ) ) )
6764, 66raleqbidv 3152 . . . . . 6  |-  ( m  =  s  ->  ( A. n  e.  ( ZZ>=
`  ( m  + 
1 ) ) ( F `  m ) R ( F `  n )  <->  A. n  e.  ( ZZ>= `  ( s  +  1 ) ) ( F `  s
) R ( F `
 n ) ) )
6867rspcv 3305 . . . . 5  |-  ( s  e.  NN  ->  ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
)  ->  A. n  e.  ( ZZ>= `  ( s  +  1 ) ) ( F `  s
) R ( F `
 n ) ) )
6968imdistanri 727 . . . 4  |-  ( ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
)  /\  s  e.  NN )  ->  ( A. n  e.  ( ZZ>= `  ( s  +  1 ) ) ( F `
 s ) R ( F `  n
)  /\  s  e.  NN ) )
70 peano2nn 11032 . . . . . . 7  |-  ( s  e.  NN  ->  (
s  +  1 )  e.  NN )
7170nnzd 11481 . . . . . 6  |-  ( s  e.  NN  ->  (
s  +  1 )  e.  ZZ )
72 uzid 11702 . . . . . 6  |-  ( ( s  +  1 )  e.  ZZ  ->  (
s  +  1 )  e.  ( ZZ>= `  (
s  +  1 ) ) )
7371, 72syl 17 . . . . 5  |-  ( s  e.  NN  ->  (
s  +  1 )  e.  ( ZZ>= `  (
s  +  1 ) ) )
74 fveq2 6191 . . . . . . 7  |-  ( n  =  ( s  +  1 )  ->  ( F `  n )  =  ( F `  ( s  +  1 ) ) )
7574breq2d 4665 . . . . . 6  |-  ( n  =  ( s  +  1 )  ->  (
( F `  s
) R ( F `
 n )  <->  ( F `  s ) R ( F `  ( s  +  1 ) ) ) )
7675rspccva 3308 . . . . 5  |-  ( ( A. n  e.  (
ZZ>= `  ( s  +  1 ) ) ( F `  s ) R ( F `  n )  /\  (
s  +  1 )  e.  ( ZZ>= `  (
s  +  1 ) ) )  ->  ( F `  s ) R ( F `  ( s  +  1 ) ) )
7773, 76sylan2 491 . . . 4  |-  ( ( A. n  e.  (
ZZ>= `  ( s  +  1 ) ) ( F `  s ) R ( F `  n )  /\  s  e.  NN )  ->  ( F `  s ) R ( F `  ( s  +  1 ) ) )
7869, 77syl 17 . . 3  |-  ( ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
)  /\  s  e.  NN )  ->  ( F `
 s ) R ( F `  (
s  +  1 ) ) )
7978ralrimiva 2966 . 2  |-  ( A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1 ) ) ( F `  m
) R ( F `
 n )  ->  A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) ) )
8062, 79impbid1 215 1  |-  ( ( R  Po  A  /\  F : NN --> A )  ->  ( A. s  e.  NN  ( F `  s ) R ( F `  ( s  +  1 ) )  <->  A. m  e.  NN  A. n  e.  ( ZZ>= `  ( m  +  1
) ) ( F `
 m ) R ( F `  n
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   class class class wbr 4653    Po wpo 5033   -->wf 5884   ` cfv 5888  (class class class)co 6650   1c1 9937    + caddc 9939   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688
This theorem is referenced by:  incsequz2  33545
  Copyright terms: Public domain W3C validator